• Title/Summary/Keyword: heat wave

Search Result 741, Processing Time 0.026 seconds

The Effect of Shading on Pedestrians' Thermal Comfort in the E-W Street (동-서 가로에서 차양이 보행자의 열적 쾌적성에 미치는 영향)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.6
    • /
    • pp.60-74
    • /
    • 2018
  • This study was to investigate the pedestrian's thermal environments in the North Sidewalk of E-W Street during summer heatwave. We carried out detailed measurements with four human-biometeorological stations on Dongjin Street, Jinju, Korea ($N35^{\circ}10.73{\sim}10.75^{\prime}$, $E128^{\circ}55.90{\sim}58.00^{\prime}$, elevation: 50m). Two of the stations stood under one row street tree and hedge(One-Tree), two row street tree and hedge (Two-Tree), one of the stations stood under shelter and awning(Shelter), while the other in the sun (Sunlit). The measurement spots were instrumented with microclimate monitoring stations to continuously measure microclimate, radiation from the six cardinal directions at the height of 1.1m so as to calculate the Universal Thermal Climate Index (UTCI) from 24th July to 21th August 2018. The radiant temperature of sidewalk's elements were measured by the reflective sphere and thermal camera at 29th July 2018. The analysis results of 9 day's 1 minute term human-biometeorological data absorbed by a man in standing position from 10am to 4pm, and 1 day's radiant temperature of sidewalk elements from 1:16pm to 1:35pm, showed the following. The shading of street tree and shelter were mitigated heat stress by the lowered UTCI at mid and late summer's daytime, One-Tree and Two-Tree lowered respectively 0.4~0.5 level, 0.5~0.8 level of the heat stress, Shelter lowered respectively 0.3~1.0 level of the heat stress compared with those in the Sunlit. But the thermal environments in the One-Tree, Two-Tree and Shelter during the heat wave supposed to user "very strong heat stress" while those in the Sunlit supposed to user "very strong heat stres" and "exterme heat stress". The main heat load temperature compared with body temperature ($37^{\circ}C$) were respectively $7.4^{\circ}C{\sim}21.4^{\circ}C$ (pavement), $14.7^{\circ}C{\sim}15.8^{\circ}C$ (road), $12.7^{\circ}C$ (shelter canopy), $7.0^{\circ}C$ (street funiture), $3.5^{\circ}C{\sim}6.4^{\circ}C$ (building facade). The main heat load percentage were respectively 34.9%~81.0% (pavement), 9.6%~25.2% (road), 24.8% (shelter canopy), 14.1%~15.4% (building facade), 5.7% (street facility). Reducing the radiant temperature of the pavement, road, building surfaces by shading is the most effective means to achieve outdoor thermal comfort for pedestrians in sidewalk. Therefore, increasing the projected canopy area and LAI of street tree through the minimal training and pruning, building dense roadside hedge are essential for pedestrians thermal comfort. In addition, thermal liner, high reflective materials, greening etc. should be introduced for reducing the surface temperature of shelter and awning canopy. Also, retro-reflective materials of building facade should be introduced for the control of reflective sun radiation. More aggressively pavement watering should be introduced for reducing the surface temperature of sidewalk's pavement.

Evaluation of Defects of Thermal Barrier Coatings by Thermal Shock Test Using Eddy Current Testing (열차폐 코팅층의 고온 열충격 시험후 ECT를 이용한 결함 평가)

  • Heo, Tae-Hoon;Cho, Youn-Ho;Lee, Joon-Hyun;Oh, Jeong-Seok;Lee, Koo-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.450-457
    • /
    • 2009
  • Periodical thermal shock can introduce defects in thermal barrier coating made by layers of CoNiCrAlY bond coating(BC) and $ZrO_2-8wt%Y_2O_3$ ceramic top coating(TC) on Inconel-738 substrate using plasma spraying. Thermal shock test is performed by severe condition that is to heat until $1000^{\circ}C$ and cool until $20^{\circ}C$. As the number of cycle is increased, the fatigue by thermal shock is also increased. After test, the micro-structures and mechanical characteristics of thermal barrier coating were investigated by SEM, XRD. The TGO layer of $Al_2O_3$ is formed between BC and TC by periodical thermal shock test, and its change in thickness is inspected by eddy current test(ECT). By ECT test, it is shown that TGO and micro-crack can be detected and it is possible to predict the life of thermal barrier coating.

Sensitivity Study on the Infra-Red Signature of Naval Ship According to the Composition Ratio of Exhaust Plume (폐기가스 조성 비율이 적외선 신호에 미치는 영향 연구)

  • Cho, Yong-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.103-110
    • /
    • 2018
  • Infrared signatures emitted from naval ships are mainly classified into internal signatures generated by the internal combustion engine of the ship and external signatures generated from the surface of the ship heated by solar heat. The internal signatures are also affected by the chemical components ($CO_2$, $H_2O$, CO and soot) of the exhaust plumes generated by the gas turbine and diesel engine, which constitute the main propulsion system. Therefore, in this study, the chemical composition ratios of the exhaust plumes generated by the gas turbines and diesel engines installed in domestic naval ships were examined to identify the chemical components and their levels. The influence of the chemical components of the exhaust plumes and their ratios on the infrared signatures of a naval ship was investigated using orthogonal arrays. The infrared signature intensity of the exhaust plumes calculated using infrared signature analysis software was converted to the signal-to-noise ratio to facilitate the analysis. The signature analysis showed that $CO_2$, soot and $H_2O$ are the major components influencing the mid-wave infrared signatures of both the gas turbine and diesel engine. In addition, it was confirmed that $H_2O$ and $CO_2$ are the major components influencing the long-wave infrared signatures.

Visualizing Spatial Information of Climate Change Impacts on Social Infrastructure using Text-Mining Method (텍스트마이닝 기법을 활용한 사회기반시설 기후변화 영향의 공간정보 표출)

  • Shin, Hana;Ryu, Jaena
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_3
    • /
    • pp.773-786
    • /
    • 2017
  • This study was to analyze data of climate change impacts on social infrastructure using text-mining methodology, and to visualize the spatial information by integrating those with regional data layers. First of all, the study identified that the following social infrastructure; power, oil and resource management, transport and urban, environment, and water supply infrastructures, were affected by five kinds of climate factors (heat wave, cold wave, heavy rain, heavy snow, strong wind). Climate change impacts on social infrastructure were then analyzed and visualized by regions. The analysis resulted that transport and urban infrastructures among all kinds of infrastructure were highly impacted by climate change, and the most severe factors of the climate impacts on social infrastructure were heavy rain and heavy snow. In addition, it found out that social infrastructure located in Seoul and Gangwon-do region were relatively largely affected by climate change. This study has significance that atypical data in media was used to analyze climate change impacts on social infrastructure and the results were translated into spatial information data to analyze and visualize the climate change impacts by regions.

Full-Wave Analysis, Design and Fabrication of Duplexer by Mode Matching Method for Ka-Band Transponder (모드정합법에 의한 Ka-밴드 위성중계기용 듀플렉서의 Full-Wave 분석 및 설계${\cdot}$제작에 관한 연구)

  • Lee, Yong-Min;Ra, Keuk-Hwan
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.8
    • /
    • pp.36-44
    • /
    • 1999
  • This paper presents the design and fabrication of the duplexer for a Ka-band satellite transponder which is analyzed transmission characteristics by calculating the generalized scattering matrix using mode matching method. It is composed of 2 bandpass filters, coupled with H-plane T-junction having symmetrical inductive iris and E-plane metal insert structures. Compared with the size and weight of the Rx and Tx filter loaded with a transponders respectively, those of the duplexer can be effectively reduced. In a high power transmission, the variation of the filter characteristics is minimized by the scheme that irises are extended to the exterior of H-plane of the waveguide. This scheme needs no extra heat sinks for dissipating high power. The duplexer is designed to improve the simplification, durability and reliability by eliminating tuning screws, which have been used to compensate for the characteristics of fabricated filters. The bandpass filters of the duplexer show the insertion loss of less than 1.2 dB and the return loss in excess of 15 dB. The isolations of more than 65 dB have been achieved between Rx and Tx filter.

  • PDF

A study on the reliability enhancement of Ultrasonic water treatment system to boiler (보일러 초음파 수처리장치의 신뢰성향상에 관한 연구)

  • Kim, Dae-Ryong;Lee, Keun-Oh
    • Journal of Energy Engineering
    • /
    • v.22 no.3
    • /
    • pp.287-293
    • /
    • 2013
  • This study was carried out to diminish the formation of scale in boilers which is one of the defect elements when they are operating. The defect relating to scale can cause a fatal impact on the explosion of boilers due to the overheating of their tubes, or it can affect the flow of water inside boilers with its bad circulation and result in a disparity of water inside the equipment. Heat transfer in the scale is low comparing to the boiler material, so it can lead to energy losses and has also impact on the global warming. In 2005, the Korean government introduced a system which requires boiler users to install the equipment which can prevent or eliminate the formation of scale to improve the management of water quality in boilers. The study on the techniques for preventing or eliminating the formation of scale started in 1821 and since then subsequently there have been lots of similar studies. The first one was about the scale reduction using potato starch. Since an ultrasonic scale preventer developed by a scientist from a Russian acoustic institute was introduced in1993, a variety of equipment of this kind have been disseminated in Korea. There has been a need to demonstrate the condition for the best performances of such equipment. Boilers are mostly composed of the main body and 288 the tube with a circular curved surface. I carried out a demonstration study on a circular tube which affects the scale defect the most among the boiler components. As a result of it, I found out the fact that the ultrasonic wave needs to reach a certain level of sound pressure and frequency to affect the formation of scale.

Evaluation of yield and growth responses on paddy rice under the extremely high temperature using temperature gradient field chamber (온도구배야외챔버를 이용한 고온에서의 벼 생육반응 및 수량성 평가)

  • Oh, Dohyeok;Ryu, Jae-Hyun;Cho, Yunhyeong;Kim, Wonsik;Cho, Jaeil
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.1
    • /
    • pp.135-143
    • /
    • 2018
  • The effect of elevated temperature on temperate paddy rice will be significant for dependable food supply in East Asia. Using temperature gradient field chamber (TGFC), which was designed to make the horizontal air temperature gradient by $0^{\circ}C$ to $3^{\circ}C$ higher than outside, we examined the measurement to understand the effects of extremely high temperature on paddy rice. In particular, the data of the year 2016, the worst heat wave in over 22 years, was analyzed in this study. The rice height in the relatively warmed condition was rapidly increased during early growth stage. However, the average grain weight and number of spikelet per panicle in the warmed chamber condition were gradually declined with increasing air temperature averaged for 40 days after first heading in each chamber. In particular, the grain yield was more dramatically decreased by the raising temperature because the percent ripened grain was quickly dropped as getting over the threshold temperature for pollination. Therefore, the surplus photosynthetic product by such lower grain filling rate may disturbed the decreases of the NDVI (Normalized Difference Vegetation Index) and SPAD chlorophyll values after first (normal) heading. In addition, the late-emerging head grain were appeared. However, this yield was too small to recover the normal yields decreased by extremely high temperature condition. Our result represented that the warmed condition in 2016 would be the critical limit for the stable yield of temperate paddy rice.

Performance of CMIP5 Models for the Relationship between Variabilities of the North Pacific Storm Track and East Asian Winter Monsoon (북태평양 스톰트랙 활동과 동아시아 겨울 몬순의 상관성에 관한 CMIP5 모델의 모의 성능)

  • Yoon, Jae-Seung;Chung, Il-Ung;Shin, Sang-Hye
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.295-308
    • /
    • 2015
  • Based on the CMIP5 historical simulation datasets, we assessed the performance of state-of-the-art climate models in respect to the relationship between interannual variabilities of the North Pacific synoptic eddy (NPSE) and East Asian winter monsoon (EAWM). Observation (ERA-Interim) shows a high negative correlation (-0.73) between the interannual variabilities of East Asian winter monsoon (EAWM) intensity and North Pacific synoptic eddy (NPSE) activity during the period of 1979~2005. Namely, a stronger (weaker) EAWM is related to a weaker (stronger) synoptic eddy activities over the North Pacific. This strong reverse relationship can be well explained by latitudinal distributions of the surface temperature anomalies over East Asian continent, which leads the variation of local baroclinicity and significantly weakens the baroclinic wave activities over the northern latitudes of $40^{\circ}N$. This feature is supported by the distribution of the meridional heat flux (${\overline{{\nu}^{\prime}{\theta}^{\prime}}}$) anomalies, which have negative (positive) values along the latitudes $40{\sim}50^{\circ}N$ for strong(weak) EAWM years. In this study, the historical simulations by 11 CMIP5 climate models (BCC-CSM1.1, CanESM2, GFDL-ESM2G, GFDL-ESM2M, HadGEM2-AO, HadGEM2-CC, IPSL-CM5A-LR, MPI-ESM-LR, MPI-ESM-MR, MRI-CGCM3, and NorESM1-M) are analyzed for DJF of 1979~2005. Correlation coefficient between the two phenomena is -0.59, which is comparable to that of observation. Model-to-model variation in this relationship is relatively large as the range of correlation coefficient is between -0.76 (HadGEM2-CC and HadGEM2-AO) and -0.33 (MRI-CGCM3). But, these reverse relationships are shown in all models without any exception. We found that the multi-model ensemble is qualitatively similar to the observation in reasoning (that is, latitudinal distribution of surface temperature anomalies, variation of local baroclinicity and meridional heat flux by synoptic eddies) of the reverse relationship. However, the uncertainty for weak EAWM is much larger than strong EAWM. In conclusion, we suggest that CMIP5 models as an ensemble have a good performance in the simulation of EAWM, NPSE, and their relationship.

Optimization of Curcumin Extraction and Removal of Bitter Substance from Curcuma longa L. (울금의 가공적성 증진을 위한 Curcumin 추출 최적화 및 쓴맛 성분 완화)

  • Kang, Seong-Koo;Hyun, Kyu-Hwan
    • Food Science and Preservation
    • /
    • v.14 no.6
    • /
    • pp.722-726
    • /
    • 2007
  • Extracting and analytical conditions of curcumin, and removal of bitterness substance from Curcuma longa L. were investigated. Absorption maxima was shown to be 424 nm at methanol solvent. Optimal conditions for analysis of curcumin was Zorbax eclipse $C_{18}$ column ; mobile phase, 75% MeOH ; flow rate, 0.8 mL/min ; wave length, UV 424 nm. Curcumin component was analyzed to be the highest content in methanol extract. In all samples, extraction yield by heating was shown to be effective as compared to room temperature. Curcumin contents of methanol and ethanol extracts in extraction of room temperature were 14.4 and 14.2 times higher than that of water extract, respectively. Two hot solvent extracts has a high curcumin content being 150 mg% as compared to room temperature. Extracting time was an effective condition when it was extracted for 60 minutes for elevating the curcumin content of water and methanol extracts. Bitter substance (BS) was markedly decreased in water extract by heat treatment of above $80^{\circ}C$. BS was weak in $121^{\circ}C$ treatment than in room temperature and it was however strong in $100^{\circ}C$ treatment. RT and $70^{\circ}C$ heat treatment were not different in BS intensity.

A study on the characteristics of cyanobacteria in the mainstream of Nakdong river using decision trees (의사결정나무를 이용한 낙동강 본류 구간의 남조류 발생특성 연구)

  • Jung, Woo Suk;Jo, Bu Geon;Kim, Young Do;Kim, Sung Eun
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.312-320
    • /
    • 2019
  • The occurrence of cyanobacteria causes problems such as oxygen depletion and increase of organic matter in the water body due to mass prosperity and death. Each year, Algae bloom warning System is issued due to the effects of summer heat and drought. It is necessary to quantitatively characterize the occurrence of cyanobacteria for proactive green algae management in the main Nakdong river. In this study, we analyzed the major influencing factors on cyanobacteria bloom using visualization and correlation analysis. A decision tree, a machine learning method, was used to quantitatively analyze the conditions of cyanobacteria according to the influence factors. In all the weirs, meteorological factors, temperature and SPI drought index, were significantly correlated with cyanobacterial cell number. Increasing the number of days of heat wave and drought block the mixing of water in the water body and the stratification phenomenon to promote the development of cyanobacteria. In the long term, it is necessary to proactively manage cyanobacteria considering the meteorological impacts.