DOI QR코드

DOI QR Code

Evaluation of yield and growth responses on paddy rice under the extremely high temperature using temperature gradient field chamber

온도구배야외챔버를 이용한 고온에서의 벼 생육반응 및 수량성 평가

  • Oh, Dohyeok (Department of Applied Plant Science, Chonnam National University) ;
  • Ryu, Jae-Hyun (Department of Applied Plant Science, Chonnam National University) ;
  • Cho, Yunhyeong (Department of Applied Plant Science, Chonnam National University) ;
  • Kim, Wonsik (National Agriculture and Food Research Organization) ;
  • Cho, Jaeil (Department of Applied Plant Science, Chonnam National University)
  • 오도혁 (전남대학교 농업생명과학대학 응용식물학과) ;
  • 류재현 (전남대학교 농업생명과학대학 응용식물학과) ;
  • 조윤형 (전남대학교 농업생명과학대학 응용식물학과) ;
  • 김원식 (일본국립연구개발법인 농업식품산업기술총합연구기구) ;
  • 조재일 (전남대학교 농업생명과학대학 응용식물학과)
  • Received : 2017.09.27
  • Accepted : 2018.02.08
  • Published : 2018.03.30

Abstract

The effect of elevated temperature on temperate paddy rice will be significant for dependable food supply in East Asia. Using temperature gradient field chamber (TGFC), which was designed to make the horizontal air temperature gradient by $0^{\circ}C$ to $3^{\circ}C$ higher than outside, we examined the measurement to understand the effects of extremely high temperature on paddy rice. In particular, the data of the year 2016, the worst heat wave in over 22 years, was analyzed in this study. The rice height in the relatively warmed condition was rapidly increased during early growth stage. However, the average grain weight and number of spikelet per panicle in the warmed chamber condition were gradually declined with increasing air temperature averaged for 40 days after first heading in each chamber. In particular, the grain yield was more dramatically decreased by the raising temperature because the percent ripened grain was quickly dropped as getting over the threshold temperature for pollination. Therefore, the surplus photosynthetic product by such lower grain filling rate may disturbed the decreases of the NDVI (Normalized Difference Vegetation Index) and SPAD chlorophyll values after first (normal) heading. In addition, the late-emerging head grain were appeared. However, this yield was too small to recover the normal yields decreased by extremely high temperature condition. Our result represented that the warmed condition in 2016 would be the critical limit for the stable yield of temperate paddy rice.

온난화에 따른 벼의 생산량 변화는 우리나라뿐만 아니라 동아시아의 식량 수급에 매우 중요한 이슈 중 하나이다. 본 연구에서는 야외 온도보다 $0{\sim}3^{\circ}C$ 높은 환경을 형성해 주는 야외 온도구배챔버(TGFC)를 이용하여 고온이 벼의 생육과 생산량에 미치는 영향을 실험하였다. 챔버는 A, B, C 총 3개를 본 연구에 이용하였으며, C챔버는 출수기 이후 온도구배 처리를 하지 않았다. 벼 품종은 중만생종인 일미를 중묘로 이앙하였으며, 비료는 표준 시비량을 고려하여 N(질소) 9 kg, P(인) 4.5kg, K(칼륨) 5.7kg을 기준으로 처리하였다. A, B, C 모든 챔버에서 영양생장기 동안 고온 조건의 벼가 상대적으로 생육 속도가 빨랐다. 하지만, 출수 후 40일 동안의 평균 온도로 정의한 등숙기 온도가 계속 고온으로 유지될 경우 등숙률과 평균 종실 중이 온도에 비례하여 점진적으로 감소하였다. 특히 2016년 기상 조건을 기점으로 등숙기 온도가 증가함에 따라 불임이 증가하여 등숙률은 급격히 감소하였고, 그 영향으로 단위 면적당 수량도 크게 낮아졌다. 결국 동화산물의 분배 불균형을 초래해 출수 이후에도 잎의 엽록소 함량이 낮아지지 않았으며 비정상적인 늦이삭이 출현하였다. 하지만 늦이삭의 생산량이 고온으로 인해 감소한 정상 이삭의 생산량을 만회하기에는 매우 부족한 정도였다. 향후 지구 온난화로 인한 벼 생육기간의 고온은 벼의 생육을 촉진시키고, 출수 및 개화시기를 단축시키며 등숙기에도 고온이 지속 될 시 등숙률과 평균종실의 무게를 감소시켜 최종적으로 벼의 생산량 및 품질을 감소시킬 것으로 예측된다.

Keywords

References

  1. Baker, J. T., and L. H. Allen, 1993: Contrasting crop species responses to $CO_2$ and temperature: rice, soybean and citrus. Plant Ecology 104(1), 239-260.
  2. Baker, J. T., 2004: Yield responses of southern US rice cultivars to $CO_2$ and temperature. Agricultural and Forest Meteorology 122(3), 129-137. https://doi.org/10.1016/j.agrformet.2003.09.012
  3. Horie, T., H. Nakagawa, J. Nakano, K. Hamotani, and H. Y. Kim, 1995: Temperature gradient chambers for research on global environment change. III. A system designed for rice in Kyoto, Japan. Plant, Cell & Environment 18(9), 1064-1069. https://doi.org/10.1111/j.1365-3040.1995.tb00618.x
  4. IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R. K. Pachauri and L. A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151, 74-76.
  5. Jagadish, S. V. K., P. Q. Craufurd, and T. R. Wheeler, 2007: High temperature stress and spikelet fertility in rice (Oryza sativa L.). Journal of Experimental Botany 58(7), 1627-1635. https://doi.org/10.1093/jxb/erm003
  6. Jung, W. S., K. J. Lee, and B. W. Lee, 2015: Responses of spikelet fertility to air, spikelet, and panicle temperatures and vapor pressure deficit in rice. Journal of Crop Science and Biotechnology 18(4), 209-218. https://doi.org/10.1007/s12892-015-0116-7
  7. Kim, J., J. Shon, C. K. Lee, W. Yang, Y. Yoon, W. Yang, Y. Yoon, W. H. Yang, Y. G. Kim, and B. W. Lee, 2011: Relationship between grain filling duration and leaf senescence of temperate rice under high temperature. Field Crops Research 122(3), 207-213. https://doi.org/10.1016/j.fcr.2011.03.014
  8. Korea Meteorological Administration (KMA), 2016: Annual Climatological Report 2016. 10-14.
  9. Maruyama, A., W. M. W. Weerakoon., Y. Wakiyama, and K. Ohba, 2013: Effects of increasing temperatures on spikelet fertility in different rice cultivars based on temperature gradient chamber experiments. Journal of Agronomy and Crop Science 199(6), 416-423. https://doi.org/10.1111/jac.12028
  10. Matsui, T., K. Kobayasi, H. Kagata, and T. Horie, 2005: Correlation between viability of pollination and length of basal dehiscence of the theca in rice under a hot-and-humid condition. Plant Production Science 8(2), 109-114. https://doi.org/10.1626/pps.8.109
  11. Peng, S., J. Huang, J. E. Sheehy, R. C. Laza, R. M. Visperas, X. Zhong, G. S. Centeno, G. S. Khush, and K. G. Cassman, 2004: Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America 101(27), 9971-9975. https://doi.org/10.1073/pnas.0403720101
  12. Satake, T., and S. Yoshida, 1978: High temperature-induced sterility in indica rices at flowering. Japanese Journal of Crop Science 47(1), 6-17. https://doi.org/10.1626/jcs.47.6
  13. Shim, K. M., K. A. Roh, K. H. So, G. Y. Kim, H. C. Jeong, and D. B. Lee, 2010: Assessing impacts of global warming on rice growth and production in Korea. Journal of Climate Change Research 1(2), 121-131. (in Korean with English abstract)
  14. Shon, J., J. Kim, C. K. Lee, and W. Yang, 2015: Effect of high temperature on leaf physiological changes as chlorophyll composition and photosynthesis rate of rice. Korean Journal of Crop Science 60(3), 266-272. (in Korean with English abstract) https://doi.org/10.7740/kjcs.2015.60.3.266
  15. Stone, P., 2000: The effects of heat stress on cereal yield and quality. Crop Responses and Adaptations to Temperature Stress: New Insights and Approaches, A. S. Basra (Eds.), CRC Press, 243-252.
  16. Tian, Y., J. Chen, C. Chen, A. Deng, Z. Song, C. Zheng, W. Hoogmoed, and W. Zhang, 2012: Warming impacts on winter wheat phenophase and grain yield under field conditions in Yangtze Delta Plain, China. Field Crops Research 134, 193-199. https://doi.org/10.1016/j.fcr.2012.05.013
  17. Wahid, A., S. Gelani, M. Ashraf, and M. R. Foolad, 2007: Heat tolerance in plants: an overview. Environmental and experimental botany 61(3), 199-223. https://doi.org/10.1016/j.envexpbot.2007.05.011
  18. Yun, S. H., and J. T. Lee, 2001: Climate changake impacts on optimum ripening periods of rice plant and its countermeasure in rice cultivation. Korean Journal of Agricultural and Forest Meteorology 3(1), 55-70. (in Korean with English abstract)
  19. Ziska, L. H., P. A. Manalo, and R. A. Ordonez, 1996: Intraspecific variation in the response of rice (Oryza sativa L.) to increased $CO_2$ and temperature: growth and yield response of 17 cultivars. Journal of Experimental Botany 47(9), 1353-1359. https://doi.org/10.1093/jxb/47.9.1353