• Title/Summary/Keyword: heat variations

Search Result 672, Processing Time 0.028 seconds

Effect of Engine Operating Conditions on Combustion and Exhaust Emission Characteristics of a Gasoline Direct Injection(GDI) Engine Fueled with Bio-ethanol (직접분사식 가솔린엔진에서 운전조건에 따른 바이오에탄올의 연소 및 배기배출물 특성)

  • Yoon, Seung Hyun;Park, Su Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.609-615
    • /
    • 2015
  • In this study, the combustion and exhaust emission characteristics in a gasoline direct injection engine with variations of the bio-ethanol-gasoline blending ratio and the excess air factor were investigated. To investigate the effects of the excess air factor and the bio-ethanol blends with gasoline, combustion characteristics such as the in-cylinder combustion pressure, rate of heat release (ROHR), and the fuel consumption rate were analyzed. The reduction of exhaust emissions such as carbon monoxide (CO), unburned hydrocarbon (HC), and nitrogen oxides ($NO_x$) were compared with those of gasoline fuel with various excess air factors. The results showed that the peak combustion pressure and ROHR of bio-ethanol blends were slightly higher and were increased as bio-ethanol blending ratio is increased. Brake specific fuel consumption increased for a higher bio-ethanol blending ratio. The exhaust emissions decreased as the bio-ethanol blending ratio increased under all experimental conditions. The exhaust emissions of bio-ethanol fuels were lower than those of gasoline.

Study of the Internal Flow and Evaporation Characteristic Inside a Water Droplet on a Vertical Vibrating Hydrophobic Surface (수직 진동을 이용한 가열된 고체표면 위 증발하는 액적의 내부유동 제어연구)

  • Park, Chang-Seok;Lim, Hee-Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.1
    • /
    • pp.37-46
    • /
    • 2017
  • Thermal Marangoni flow has been observed inside droplets on heated surfaces, finally resulting in a coffee stain effect. This study aims to visualize and control the thermal Marangoni flow by employing periodic vertical vibration. The variations in the contact angle and internal volume of the droplet as it evaporates is observed by using a combination of continuous light and a still camera. With regard to the internal velocity, the particle image velocimetry system is applied to visualize the internal thermal Marangoni flow. In order to estimate the internal temperature gradient and surface tension on the surface of a droplet, the theoretical model based on the conduction and convection theory of heat transfer is applied. Thus, the internal velocity increases with an increase in plate temperature. The flow directions of the Marangoni and gravitational flows are opposite, and hence, it may be possible to control the coffee stain effect.

Evaluation of Quality of Red Pepper with variations in Drying Methods (건조방법에 따른 건고추의 품질평가)

  • 김재열;금동혁
    • Food Science and Preservation
    • /
    • v.3 no.2
    • /
    • pp.137-143
    • /
    • 1996
  • In order to produce the high-quality of dried red pepper with respect to a color and a taste we developed a automatic drier equipped with combined several heat energies(ADCHE). and compared the quality of ADCHE-treated red pepper with that of the pepper treated with conventional dryings such as natural, hot-air, and far-infrared ray dryings. The results obtained were as follows : (1) The contents of capsanthin varied significantly with drying methods within the range of 1.7 to 6. 4mg/g dry weight. The capsanthin level of red pepper treated with far-infrared ray drying was higher than that of the pepper treated with ADCHE showed the highest at 51.46mg/g dry weight of three drying methods. (2) As a result of determination of color intensity of-red-pepper using-a colorimeter, the red color intensity of the peppers was affected by drying methods irrespective of drying temperature, and especially a value of red pepper treated with ADCHE was appeared to be 19. 1, indicated that this pepper have the most bright color intensity. (3) The contents of soluble browing subatances increased with a increase in drying temperature, but L* value of red pepper treated with ADCHE was appeared to be 0.187, indicated that this red pepper have the most clear red color (4) The changes of capsanthin level of red pepper according to drying methodes did not show significantly, but generally a decreasing rate of capsanthin levels were lower in that order ADCHE

  • PDF

THD Analysis of a Surface Textured Parallel Thrust Bearing: Effect of Dimple Radius and Depth (Surface Texturing한 평행 스러스트 베어링의 열유체윤활 해석: 딤플 반경과 깊이의 영향)

  • Jeong, YoHan;Park, TaeJo
    • Tribology and Lubricants
    • /
    • v.30 no.5
    • /
    • pp.303-310
    • /
    • 2014
  • In order to reduce friction and improve reliability, researchers have applied various surface texturing methods to highly sliding machine elements such as mechanical seals and piston rings. Despite extensive theoretical research on surface texturing, previous numerical results are only applicable to isothermal and iso-viscous conditions. Because the lubricant flow pattern of textured bearing surfaces is much more complicated than that for non-textured bearings, the Navier?Stokes equation is more suitable than the Reynolds equation for the former. This study carries out a thermohydrodynamic (THD) lubrication analysis to investigate the lubrication characteristics of a single micro-dimpled parallel thrust bearing cell. The analysis involves using the continuity, Navier?Stokes, energy, temperature?viscosity relation, and heat conduction equations with the commercial computational fluid dynamics (CFD) code FLUENT. This study discretizes these equations using the finite volume method and solves them using the SIMPLE algorithm. The results include finding the streamlines, pressure and temperature distributions, and variations in the friction force and leakage for various dimple radii and depths. Increasing the dimple radius and decreasing the depth causes a recirculation flow to form because of a strong vortex, and the oil temperature greatly increases compared with the non-textured case. The present numerical scheme and results are applicable to THD analysis of various surface-textured sliding bearings and can lead to further study.

Experimental Evaluation of Hydrophilic Membrane Humidifier with Isolation of Heat Transfer Effect (친수성 막을 통한 수분 전달 특성 연구)

  • Tak, Hyun Woo;Kim, Kyoung Teck;Han, Jae Young;Im, Seok Yeon;Yu, Sang Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.815-821
    • /
    • 2013
  • The efficiency and lifetime of a polymer electrolyte membrane fuel cell (PEMFC) system is critically affected by the humidity of the incoming gas, which should be maintained properly under normal operating conditions. Typically, the incoming gas of a fuel cell is humidified by an external humidifier, but few studies have reported on the device characteristics. In this study, a laboratory-scale planar membrane humidifier is designed to investigate the characteristics of water transport through a hydrophilic membrane. The planar membrane humidifier is immersed in a constant temperature bath to isolate the humidifier from the effect of temperature variations. The mass transfer capability of the hydrophilic membrane is first examined under isothermal conditions. Then, the mass transfer capability is investigated under various conditions. The results show that water transport in the hydrophilic membrane is significantly affected by the flow rate, operating temperature, operating pressure, and flow arrangement.

Boundary Element Analysis of Thermal Stress Intensity Factors for Cusp Crack in Transient State (천이상태에 있는 커스프균열에 대한 열응력세기계수의 경계요소 해석)

  • 이강용;홍정균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1700-1710
    • /
    • 1992
  • The boundary element method is applied to determine thermal stress intensity factors for a cusp crack in transient state. In the steady temperature field, numerical values of thermal stress intensity factors for a Grifith crack and a symmetric lip cusp crack in a finite body are in good agreement within .+-. 5% with the previous solutions. In transient state, the numerical values of thermal stress intensity factors for the Griffith crack are also in good agreement with the pervious solutions. In both steady and transient states, those for the symmetric lip cusp crack with the crack surface insulated or fixed to the constant temperature are calculates for various effective crack lengths, configuration parameters and uniform heat flow angles. The variations of the thermal boundary conditions of the crack surface have a effect on stress intensity factors. The signs on the values of thermal stress intensity factors can be changed in time variation.

Investigation of Frozen Rock Failure using Thermal Infrared Image (열적외선영상을 이용한 동결된 암석의 파괴특성 연구)

  • Park, Jihwan;Park, Hyeong-Dong
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.144-154
    • /
    • 2015
  • Mechanical energy is accumulated in the object when stress is exerted on rock specimens, and the failure is occurred when the stress is larger than critical stress. The accumulated energy is emitted as various forms including physical deformation, light, heat and sound. Uniaxial compression strength test and point load strength test were carried out in low temperature environment, and thermal variation of rock specimens were observed and analyzed quantitatively using thermal infrared camera images. Temperature of failure plane was increased just before the failure because of concentration of stress, and was rapidly increased at the moment of the failure because of the emission of thermal energy. The variations of temperature were larger in diorite and basalt specimens which were strong and fresh than in tuff specimens which were weak and weathered. This study can be applied to prevent disasters in rock slope, tunnel and mine in cold regions and to analyze satellite image for predicting earthquake in cold regions.

Thermohydrodynamic Lubrication Analysis of Surface-Textured Parallel Slider Bearing: Effect of Dimple Depth (Surface Texturing한 평행 슬라이더 베어링의 열유체윤활 해석: 딤플 깊이의 영향)

  • Park, TaeJo;Kim, MinGyu
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.288-295
    • /
    • 2017
  • In order to improve the efficiency and reliability of the machine, the friction should be minimized. The most widely used method to minimize friction is to maintain the fluid lubrication state. However, we can reduce friction only up to a certain limit because of viscosity. As a result of several recent studies, surface texturing has significantly reduced the friction in highly sliding machine elements, such as mechanical seals and thrust bearings. Thus far, theoretical studies have mainly focused on isothermal/iso-viscous conditions and have not taken into account the heat generation, caused by high viscous shear, and the temperature conditions on the bearing surface. In this study, we investigate the effect of dimple depth and film-temperature boundary conditions on the thermohydrodynamic (THD) lubrication of textured parallel slider bearings. We analyzed the continuity equation, the Navier-Stokes equation, the energy equation, and the temperature-viscosity and temperature-density relations using a computational fluid dynamics (CFD) code, FLUENT. We compare the temperature and pressure distributions at various dimple depths. The increase in oil temperature caused by viscous shear was higher in the dimple than in the bearing outlet because of the action of the strong vortex generated in the dimple. The lubrication characteristics significantly change with variations in the dimple depths and film-temperature boundary conditions. We can use the current results as basic data for optimum surface texturing; however, further studies are required for various temperature boundary conditions.

A Study on the Effects on Low Cycle Fatigue Life of a High Pressure Turbine Nozzle due to the Perturbation of Crystal Orientation of Grain of DS Materials (일방향 응고 재료의 결정립 성장 방향 섭동이 고압터빈 노즐 저주기 피로 수명에 미치는 영향에 대한 연구)

  • Huh, Jae Sung;Kang, Young Seok;Rhee, Dong Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.7
    • /
    • pp.653-658
    • /
    • 2016
  • High pressure components of a gas turbine engine are generally made of nickel-base superalloys, using precision casting process due to complicated geometries with intricate channels and cooling holes. Turbine components manufactured from directionally solidified and single crystal materials have columnar grains; however, it is found that the crystals do not grow in its preferred direction, although the orientation can be controlled. This anisotropy can lead to the variations of elastic and Hill's parameters in constitutive equations, and they alter stress distributions and the low cycle fatigue life. We aims to evaluate the effects of perturbed crystal orientations on the structural integrity of a directionally solidified nozzle using low cycle fatigue life. We also attempt to show the necessity for the control of allowed manufacturing errors and stochastic analysis. Our approaches included conjugate heat transfer and structural analysis, along with low cycle fatigue life assessment.

Estimation of solar Irradiation in Korea peninsula by using GMS-5 data

  • Yoon, Hong-Joo;Cha, Joo-Wan;Chung, Hyo-Sang;Lee, Yong-Seob;Hwang, Byong-Jun;Kim, Young-Haw
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.20-25
    • /
    • 1998
  • Solar irradiation controls the exchange of heat energy between atmosphere and land or ocean, and becomes an important factors to the radiance flux at the surface and the biosphere. In order to estimate solar irradiance and earth albedo In Korea peninsula during 1996, GMS date and paramaterization model was combinationally used. In clear sky, the paramaterization model was used to estimate solar iradiance. Also in cloudy sky, the earth albedo was used to calculate the Interceptive effect of solar irradiance. The hourly solar irradiance [the hourly earth albedo] showed generally very low values with <1.00 MJ/m$^2$hr [high values with >0.65] on the middle part (36.00-36.50$^{\circ}$S) and the Southeastern part (near 34.50$^{\circ}$S) in Korea peninsula, respectively. Satellite estimates (GMS data) with pyramometer measurements (in-situ data) were compared for 21 observed stations. Totally, correlation coefficient showed high values with 0.85. In the monthly variation, correlation coefficient of the spring and summer with rms=about 0.42 MJ/m$^2$hr was better than the autumn and winter with rms >0.5 MJ/m$^2$hr. Generally monthly variations of correlation coefficient between satellite estimetes and pyranometer measurements showed r=0.936 in clear sky during 1 year except only May, June, July and August.

  • PDF