• Title/Summary/Keyword: heat treatment processing

Search Result 603, Processing Time 0.029 seconds

Heat Treatment of Superalloys for High Temperature Applications (고온구조용 초내열합금 열처리)

  • Park, Nho-Kwang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.6
    • /
    • pp.341-348
    • /
    • 2003
  • Superalloys which can be devided into three categohes, i.e. Ni-base, Co-base, and Fe-base alloys are widely used for high temperature applications. Since superalloys contain many alloying elements and precipitates, its chemistry and processing parameters need to be carefully designed. In this review, current state-of-the art in the superalloy technologies is described with special attention to the heat-treatment for the control of the microstructures and mechanical properties.

The Effects of Cyclic Heat Treatment Process for Fine Microstructure of TiAl Cast Alloy (주조용 TiAl 합금의 조직 미세화를 위한 반복열처리 공정 조건에 관한 연구)

  • Kong, Man-Sik;Yang, Hyunseok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.5
    • /
    • pp.195-200
    • /
    • 2019
  • For expanding the applications and workability of TiAl alloy, elongation is very important property. Fine microstructure is needed for elongation and physical properties of TiAl alloys. In this study, The effects of cyclic heat treatment process for fine microstructure of Ti-46Al-Nb-W-Cr-Si-C alloy, which was made by VAR (vacuum arc remelting) and VIM(vacuum induction melting) centrifugal casting process, was investigated. Cycle heat treatment process was very effective for recrystallization of this TiAl system, which has microstructure size of $50{\sim}100{\mu}m$ through pre-heat treatment, cyclic heat treatment in ${\alpha}+{\gamma}$ phase region and solution heat treatment respectively. Refined grain size was finally confirmed by photos of optical microscope and scanning electron microscope.

Heat Treatments Used in the Dairy Industry (유제품에 이용되는 주요 열처리 조건)

  • Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.230-236
    • /
    • 2020
  • Heat treatment is a fundamental processing technology in the dairy industry. The main purpose of heat treatment is to destroy pathogenic and spoilage promoting microorganisms to ensure milk safety and shelf life. Despite the development of alternative technologies, such as high-pressure processing and pulse field technology for microbial destruction, heat treatment is widely used in the dairy industry and in other food processes to destroy microorganisms. Heat treatment has contributed greatly to the success of food preservation since Pasteur's early discovery that heat treatment of wine and beer could prevent their deterioration, and since the introduction of milk pasteurization in the 1890s. In Korea, food labeling standards do not stratify heat treatments into low temperature, high temperature, and ultra-high temperature methods. Most milk is produced in Korea by pasteurization, with extended shelf life (ESL : 125--140℃ / 1-10 s). Classification based on temperature (i.e. low, high, and ultra-high), is meaningless.

Effects of Heat Treatment on the Nutritional Quality of Milk: II. Destruction of Microorganisms in Milk by Heat Treatment (우유의 열처리가 우유품질과 영양가에 미치는 영향: II. 열처리에 의한 우유의 미생물 사멸효과)

  • Kim, Kwang-Hyun;Park, Dae Eun;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.1
    • /
    • pp.55-72
    • /
    • 2017
  • The second article of 'Effects of heat treatment on the nutritional quality of milk,' titled 'Destruction of microorganisms in milk by heat treatment' and authored by Dr. Seong Kwan Cha, who worked at the Korea Food Research Institute, covers the heat-stable microorganisms that exist in milk after pasteurization. The article focusses on the microbiological quality of raw milk and market milk following heat treatment, and is divided into four sub-topics: microbiological quality of raw milk, survey and measurement of microorganisms killed in raw milk, effect on psychrophilic and mesophilic microorganisms, and effect of heat treatment methods on thermoduric microorganisms. Bacillus spp. and Clostridium spp. are sporeforming gram-positive organisms commonly found in soil, vegetables, grains, and raw and pasteurized milk that can survive most food processing methods. Since spores cannot be inactivated by LTLT (low temperature long time) or HTST (high temperature short time) milk pasteurization methods, they are often responsible for food poisoning. However, UHT (ultra high temperature) processing completely kills the spores in raw milk by heating it to temperatures above $130^{\circ}C$ for a few seconds, and thus, the UHT method is popularly used for milk processing worldwide.

Applicability of Air Cooling Heat-treatment for a Duplex Stainless Steel Casting (2상 스테인레스 주강의 공냉 열처리 적용 가능성)

  • Kim, Bong-Whan;Yang, Sik;Shin, Je-Sik;Lee, Sang-Mok;Moon, Byung-Moon
    • Journal of Korea Foundry Society
    • /
    • v.26 no.1
    • /
    • pp.17-26
    • /
    • 2006
  • The substitution of cooling method from water quenching to air cooling after solution heat treatment was aimed for the development of a convenient and economical heat treatment process of duplex stainless steels without deterioration of mechanical and corrosion resistant properties for the industry. In order to achieve this goal, the mechanical properties and corrosion properties of a ASTM A890-4A duplex stainless steel were systematically investigated as functions of casting condition and cooling method after solution heat treatment. A 3-stepped sand mold and a permanent Y-block mold were used to check the effects of solidification structure and cooling rate after solution heat treatment. The microstructural characteristics such as the ferrite/austenite phase ratio and the precipitation behavior of ${\sigma}$ phase and carbides were investigated by combined analysis of OM and SEM-EDX with an aid of TTT diagram. Hardness and tension test were performed to evaluate the mechanical properties. Impact property at $-40^{\circ}C$ and corrosion resistance were also examined to check the possibility of the industrial application of this basic study. Throughout this investigation, air-cooling method was proved to effectively substitute for water-quenching process after the solution heat treatment, when the duplex stainless steel was sand mold cast with a thickness below 15 mm or permanent mold cast with a thickness below 20 mm.

Effects of Mg Addition on Heat Treatment and Mechanical Properties of A356 Alloy (Mg 첨가에 따른 A356 합금의 열처리 및 기계적 특성 변화)

  • Jo, Jae-Chan;Kim, Kwang-Sam;Im, In-Taek;Kim, Dae-Hwan;Shim, Sung-Yong;Lim, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.36 no.6
    • /
    • pp.195-201
    • /
    • 2016
  • The effects of Mg addition on heat treatment and mechanical properties of A356 alloy were investigated. With increased amounts of Mg addition to A356 alloy, the grain size decreased and eutectic Si was refined. And, this process can improve the mechanical properties. Solid solution heat treatment causes the spheroidizing of eutectic Si. In this study, although eutectic Si was refined with Mg addition, solid solution time increased from 2 hours to 6 hours with Mg addition, and aging time also increased, from 4 hours to 8 hours. After heat treatment, Mg2Si remained in a formation of Chinese script. And, Chinese script Mg2Si formed with Mg addition caused a reduction of the elongation of the alloys according to the stress concentration.

Effect of post-annealing on single-walled carbon nanotubes synthesized by arc-discharge

  • Park, Suyoung;Choi, Sun-Woo;Jin, Changhyun
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.4
    • /
    • pp.388-394
    • /
    • 2019
  • In this study, high-purity single-walled carbon nanotubes (SWCNTs) were prepared by removing the unreacted metal constituents and amorphous carbon impurities using a post-annealing process. Unlike conventional thermal processing techniques, this technique involved different gas atmospheres for efficient removal of impurities. A heat treatment was conducted in the presence of chlorine, oxygen, and chlorine + oxygen gases. The nanotubes demonstrated the best characteristics, when the heat treatment was conducted in the presence of a mixture of chlorine and oxygen gases. The scanning electron microscopy, transmission electron microscopy, ultraviolet absorbance, and sheet resistance measurements showed that the heat treatment process efficiently removed the unreacted metal and amorphous carbon impurities from the as-synthesized SWCNTs. The high-purity SWCNTs exhibited improved electrical conductivities. Such high-purity SWCNTs can be used in various carbon composites for improving the sensitivity of gas sensors.

Effect of Heat Treatment on Male specific Coliphage and Norovirus Concentrations in Norovirus Contaminated Oyster Crassostrea gigas (가열처리 조건에 따른 오염굴(Crassostrea gigas) 중의 Male Specific Coliphage와 노로바이러스 농도변화)

  • Park, Kunbawui;Park, Yong Su;Kwon, Ji Young;Yu, Hong Sik;Lee, Hee Jung;Kim, Ji Hoe;Lee, Tae Seek;Kim, Poong Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.6
    • /
    • pp.898-903
    • /
    • 2015
  • Noroviruses (NoV) are known to cause acute epidemic gastroenteritis worldwide. Outbreak strains are predominantly genogroup I (GI) and genogroup II (GII) in oysters Crassostrea gigas. We investigated the changes in concentration of male specific coliphage (MSC) and NoV under heat treatment of the naturally contaminated oyster, Crassostrea gigas. After heat treatment for 5 min in $85^{\circ}C$, no viable MSC was detected. The concentrations of GI and GII NoV decreased by 1.65 log and 2.25 log, respectively, following heat treatment for 5 min at $100^{\circ}C$. Moreover, both GI and GII NoV were completely deactivated by heat treatment for 10 min at $100^{\circ}C$. Therefore, in order to reduce the risk of norovirus infection from contaminated oysters, immersion in boiling water for at least 10 min is recommended.

The Current Status of the Development of Heat-Treatment-Free Steel (비조질강의 개발 동향)

  • Lee, Duck-Lak
    • Transactions of Materials Processing
    • /
    • v.11 no.5
    • /
    • pp.388-393
    • /
    • 2002
  • Heat-treatment-free steels have been replacing for conventional quenched-and-tempered structural steels since the microalloyed forging steel was developed in early 1970s in Germany. Substantial cost reduction provides the driving force for this change. As a result of intensive R & D efforts and application trials, various kinds of grades, for example heat-treatment-free steels for hot forging, machining and cold heading, have been developed and moreover these steels are in tonnage production throughout the world. The developments in alloy steels, processing conditions and structure-property characteristics of the heat-treatment-free steels, are described and also recent trend and future prospect are summarized in this report.

Effect of Heat Treatment and Acid Leaching of Siliceous Mudstone on the Purity of Silica Precursors (실리카 전구물질 순도에 미치는 규질이암의 열처리 및 산 침출 조건의 영향)

  • Cho, Kuk;Chang, Han-Kwon;Kil, Dae-Sup;Suh, Yong-Jae;Park, Jin-Ho;Jang, Hee-Dong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.247-253
    • /
    • 2007
  • The effect of heat treatment and acid leaching of siliceous mudstone on the purity of silica precursors, such as sodium silicate and silicic acid, was studied. As well as the temperatures for the heat treatment of siliceous mudstone, the concentrations of hydrochloric acid and sulfuric acid were varied to achieve the highest content of silicon in the precursors while minimizing energy and chemical consumption. It was found that the optimum conditions were achieved at the heat treatment temperature of $600^{\circ}C$ and hydrochloric acid of 1.56 M. The relative concentrations of silicon in the synthesized sodium silicate and silicic acid were as high as 99.2 and 99.5%, respectively.