Effect of Heat Treatment and Acid Leaching of Siliceous Mudstone on the Purity of Silica Precursors

실리카 전구물질 순도에 미치는 규질이암의 열처리 및 산 침출 조건의 영향

  • Cho, Kuk (Minerals and Materials Processing Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Chang, Han-Kwon (Minerals and Materials Processing Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Kil, Dae-Sup (Minerals and Materials Processing Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Suh, Yong-Jae (Minerals and Materials Processing Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Park, Jin-Ho (Minerals and Materials Processing Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Jang, Hee-Dong (Minerals and Materials Processing Division, Korea Institute of Geoscience & Mineral Resources)
  • 조국 (한국지질자원연구원 자원활용소재연구부) ;
  • 장한권 (한국지질자원연구원 자원활용소재연구부) ;
  • 길대섭 (한국지질자원연구원 자원활용소재연구부) ;
  • 서용재 (한국지질자원연구원 자원활용소재연구부) ;
  • 박진호 (한국지질자원연구원 자원활용소재연구부) ;
  • 장희동 (한국지질자원연구원 자원활용소재연구부)
  • Published : 2007.12.30

Abstract

The effect of heat treatment and acid leaching of siliceous mudstone on the purity of silica precursors, such as sodium silicate and silicic acid, was studied. As well as the temperatures for the heat treatment of siliceous mudstone, the concentrations of hydrochloric acid and sulfuric acid were varied to achieve the highest content of silicon in the precursors while minimizing energy and chemical consumption. It was found that the optimum conditions were achieved at the heat treatment temperature of $600^{\circ}C$ and hydrochloric acid of 1.56 M. The relative concentrations of silicon in the synthesized sodium silicate and silicic acid were as high as 99.2 and 99.5%, respectively.

규질이암의 열처리 및 산 침출이 소듐 실리케이트나 규산 수용액과 같은 실리카 전구물질 순도에 미치는 영향을 연구하였다. 규질이암의 열처리 온도, 산 침출시 염산 농도 및 황산 농도를 변화시키며 전구물질 내에 실리콘 함량을 최대한 높이면서 에너지 및 화학약품의 소모는 최소화하는 조건을 구하였다. 열처리는 $600^{\circ}C$, 산 침출은 1.56 M의 염산만 사용하였을 경우 최적이었다. 소듐 실리케이트와 규산 수용액의 실리콘 순도는 각각 최대 99.2%와 99.5%였다.

Keywords

References

  1. 노진환 (2000) 규질 이암으로부터 제올라이트의 수열 합성에 관한 연구. 한국광물학회지 13, 171-185
  2. 노진환 (2004) 규질 이암으로부터 유기 스멕타이트의 저온 수열합성. 한국광물학회지 17, 49-59
  3. 장희동, 장한권, 윤호성, 조국, 심상권, 박진호, 오세 용 (2007) 규질이암으로부터 실리카 나노분말 제 조. 한국지구시스템공학회지 44, 1-8
  4. Basim, G.B. and Moudgil, B.M. (2002) Effect of soft agglomerates on CMP slurry performance. J Colloid Interf Sci, 256, 137-142 https://doi.org/10.1006/jcis.2002.8352
  5. Chow, P.Y. and Gan, L.M. (2004) Microemulsion processing of silica-polymer nanocomposites. J. Nanosci. Nanotechnol., 4, 197-202
  6. Jang, H.D. (2001) Experimental study of synthesis of silica nanoparticles by a bench-scale diffusion flame reactor. Powder Technol., 119, 102-108 https://doi.org/10.1016/S0032-5910(00)00407-1
  7. Jeffery, P.G. (1975) Chemical methods of rock analysis (2nd Ed.), Pergamon Press, Oxford, 405p
  8. Lee, M.H., Cho, K., Shah, A.P. and Biswas, P. (2005) Nanostructured sorbents for capture of cadmium species in combustion environments. Environ Sci Technol., 39, 8481-8489 https://doi.org/10.1021/es0506713
  9. Lenggoro, I.W., Hata, T., Iskandar, F., Lunden, M.M. and Okuyama, K. (2000) An experimental and modeling investigation of particle production by spray pyrolysis using a laminar flow aerosol reactor. J. Mater Res, 15, 733-743 https://doi.org/10.1557/JMR.2000.0106
  10. Lu, Y.F., Fan, H.Y., Stump, A., Ward, T.L., Rieker, T. and Brinker, C. J. (1999) Aerosolassisted self-assembly of mesostructured spherical nanoparticles. Nature, 398, 223-226 https://doi.org/10.1038/18410
  11. Park, K.Y., Kim, J., Jeong, J. and Choi, Y.Y. (1997) Production of poly (aluminum chloride) and sodium silicate from clay. Ind. Eng. Chem. Res., 36, 2646-2650 https://doi.org/10.1021/ie9607863
  12. Yoo, J.W., Yun, D.S. and Kim, H.J. (2006) Influence of reaction parameters on size and shape of silica nanoparticles. J. Nanosci. Nanotechnol., 6, 3343- 3346 https://doi.org/10.1166/jnn.2006.006
  13. Yu, H., Sheikholeslami, R. and Doherty, W.O.S. (2002) Mechanisms, thermodynamics and kinetics of composite fouling of cadmium oxalate and amorphous silica in sugar mill evaporators - A preliminary study. Chem Eng Sci, 57, 1969-1978 https://doi.org/10.1016/S0009-2509(02)00077-5