• Title/Summary/Keyword: heat treatment optimization

Search Result 87, Processing Time 0.026 seconds

Evaluation of the Microstructure and Mechanical Properties for Ni Superalloy Materials Using HIP and Post Heat Treatment (HIP과 열처리공정을 이용한 Ni기 초합금 소재의 미세조직 및 기계적 특성 분석)

  • Kim, Youngdae;Hyun, Jungseob;Chang, Sungyong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.2
    • /
    • pp.137-143
    • /
    • 2020
  • The CM247LC, a Ni-based superalloy material used for gas turbine hot gas path parts, is casted using directionally solidified technology to analyze the mechanical properties and microstructures through HIP (Hot Isostatic Pressing) and post-heat treatment, and to derive optimal HIP treatment conditions. The CM247LC material is being researched in various ways as an alternative material for prototyping gas turbine blades. In particular, the blade rotating part is exposed and operated in a high temperature and high-pressure environment, and when damaged, it may cause huge economic losses. Therefore, in order to use the CM247LC material as prototyping materials for gas turbine blades, the reliability of the microstructure and mechanical properties must be verified. In this study, after casting rod test specimens using CM247LC material by directionally solidified technology, after that the specimens were performed by HIP treatment and post-heat treatment to test two HIP conditions designed by KEPCO to derive the possibility of prototyping of CM247LC material and optimization of HIP treatment conditions. Additionally, the properties of CM247LC material were compared to the GTD111DS material using for 1,300℃ class gas turbine blades.

Optimization of Maca (Lepidium meyenii) Extraction for Natural Beverage Development using Enzyme Treatment (효소처리에 의한 천연 마카음료 개발을 위한 최적 추출 조건)

  • Kim, Jeong-Ah;Im, Moo-Hyeog
    • Journal of the Korean Society of Food Culture
    • /
    • v.34 no.3
    • /
    • pp.361-368
    • /
    • 2019
  • The purpose of this study was to establish the best optimized extraction condition for the optimal development of fresh maca beverage using low temperature extraction and enzyme treatment. Low temperatures were applied to prevent heat-related nutritional loss during the extraction process. Best extraction conditions were investigated based on the ratio of maca to water, the ratio of enzymes, extraction temperature and time, and agitation. The optimal enzyme conditions were also examined after the treatment of cellulase:pectinase mixture to maintain the original color and flavor, as well as to increase the extraction yield. When cellulase:pectinase was 1:1, the extraction rate ranged from 77.84 to 79.29%. In addition, the best extraction rate was found when maca was mixed with twice volume of water and incubated at $45^{\circ}C$ ($84.05{\pm}0.32%$) with 90 rpm ($87.13{\pm}0.46%$) agitation for 3 hours ($84.73{\pm}0.29%$). Furthermore, sensory evaluation showed a high score in flavor, sweetness, and overall acceptability after adding 3% jujube concentrate into a fresh maca beverage.

1. The development of Pizza with Chungkukjang and Onion : Optimization of Pizza Crust Preparation Using Response Surface Methodology (청국장${\cdot}$양파 첨가 피자 제조 : 1. 반응표면분석을 이용한 피자크러스트 제조의 최적화)

  • Sung, Chae-Ran;Kim, Chang-Soon
    • Korean journal of food and cookery science
    • /
    • v.23 no.4 s.100
    • /
    • pp.481-491
    • /
    • 2007
  • This study was conducted to develop pizza crust with additions of Chungkukjang and onion. The stickiness of the pizza dough containing fresh Chungkukjang (C), heated Chungkukjang (HC), and fresh Chungkukjang with added dough-improver (CI), was measured to evaluate the dough properties. The optimum conditions for pizza crust preparation relating to the processing suitability and sensory quality were established using response surface methodology (RSM). When HC and CI were used in dough making, dough stickiness was reduced to 37% and 51%, respectively. Therefore, the dough-improver(2%) offered the pizza dough better rheological properties when C was used without heat treatment. On the other hand, processing suitability such as the spreadability and overall acceptability, which included the smell and taste of the pizza, were impaired as the amount of CI increased. However, the use of fresh ground onion in the pizza dough compensated for these impairments. The optimum conditions for pizza crust making as determined by RSM were 25.1% onion, 7.1% Chungkukjang, and 52.3 min of fermentation time.

Optimization of DL-EPR Test Solution for Duplex Stainless Steel S31083 Using Taguchi Design (다구찌 설계를 이용한 듀플렉스 스테인리스강 S31083용 DL-EPR 시험용액의 최적화)

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.77-84
    • /
    • 2021
  • This study aims to optimize the DL-EPR test solution for duplex stainless steel S31083 using the Taguchi design. The test solution parameters applied to the Taguchi design are H2SO4, NaCl, KSCN concentration, and temperature. In the experimental design, an orthogonal array of 4 levels 4 factor L16(44) was used. Output values for the orthogonal array were used for resolution (degree of sensitization) and selective etch (Ia) values. The optimal test solution conditions were selected by comparing the normalized S/N ratio for the two reaction properties. As a result, the H2SO4 and NaCl were identified as the main factors influencing the sensitivity measurement, but the delta statistics showed that the KSCN concentration and temperature had relatively low influence. The optimal condition was identified as 1.5 M H2SO4+0.03 M KSCN+1.5M NaCl at 30 ℃. The degree of sensitization presented a tendency to depend on the heat treatment temperature and time in the optimal test solution. This investigation confirmed the possibility of optimizing the experiment solution for the DL-EPR test of stainless steel using the Taguchi technique.

Optimization of Analytical Condition for Reliable and Accurate Measurement of Carbon Concentration in Carburized Steel by EPMA (EPMA를 이용한 침탄강의 정확하고 신뢰성 있는 탄소농도 측정을 위한 분석조건 최적화)

  • Gi-Hoon Kwon;Hyunjun Park;Byoungho Choi;Young-Kook Lee;Kyoungil Moon
    • Korean Journal of Materials Research
    • /
    • v.33 no.3
    • /
    • pp.106-114
    • /
    • 2023
  • The carbon concentration in the carburized steels was measured by electron probe microanalysis (EPMA) for a range of soluted carbon content in austenite from 0.1 to 1.2 wt%. This study demonstrates the problems in carbon quantitative analysis using the existing calibration curve derived from pure iron (0.008 wt%C) and graphite (99.98 wt%C) as standard specimens. In order to derive an improved calibration curve, carbon homogenization treatment was performed to produce a uniform Kα intensity in selected standard samples (AISI 8620, AISI 4140, AISI 1065, AISI 52100 steel). The trend of detection intensity was identified according to the analysis condition, such as accelerating voltage (10, 15, 30 keV), and beam current (20, 50 nA). The appropriate analysis conditions (15 keV, 20 nA) were derived. When the carbon concentration depth profile of the carburized specimen was measured for a short carburizing time using the improved calibration curve, it proved to be a more reliable and accurate analysis method compared to the conventional analysis method.

Optimization of Bar-to-Bar Dissimilar Friction Welding of Hydraulic Valve Spool Steel and the Weld Strength Properties and Its AE Evaluation (유공압 밸브 스풀용 강재의 봉대봉 이종재 마찰 용접 최적화와 용접강도 특성 및 AE 평가)

  • 오세규;유인종;박형동;이연탁
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.24-33
    • /
    • 1996
  • Up to now, most of studies on mechanical properties in friction welded components are about tensile and bending strength. However the fatigue studies on the friction-welded components subjected to repeated stress are not available. The purposes of this study are the development of fundamental design and the development of in-process real-time weld quality evaluation technique by acoustic emission for the bar-to-bar dissimilar friction welding of hydraulic valve spool steels.

  • PDF

A Study on the Progressive Die Development of Sheet Metal Forming Part (박판 포밍제품의 프로그레시브 금형개발에 관한 연구)

  • Sim, Sung-Bo;Lee, Sung-Taeg
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.43-49
    • /
    • 2004
  • The production parts have required multiple processes such as drawing, piercing, blanking and notching etc. are performed with a high production rates in progressive die. In order to prevent the defects of process result, the optimization of strip process layout design, die design, die making, and tryout etc. are needed. According to these factors of die development process, it has been required that the theory and practice of metal working process and its phenomena, die structure, machining conditions for die making, die materials, heat treatment of die components, processing know-how and so on. In this study, we designed and analyzed die components through the carrying out of upper relevant matters also simulated the strip process layout of multiple stage drawing by DEFORM. Especially the result of tryout and its analysis became to the feature of this study with a system of PDDC(Progressive Die design by computer).

  • PDF

Model-based Scheduling Optimization of Heat Treatment Furnaces in Hot Press Forging Factory (비용 예측 모형 기반 열처리로 작업 계획 최적화)

  • Heo, Hyeong-Rok;Kim, Se-Young;Ryu, Kwang-Ryel
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.939-941
    • /
    • 2019
  • 단조는 강괴를 고온으로 가열하고 원하는 형상으로 만드는 공정이다. 가열로에 강괴를 장입하여 가열하고, 고온의 강괴에 프레스, 절단 공정을 적절히 반복하여 원하는 형상으로 만든다. 형상이 완성된 강괴의 경도 및 강도를 조절하기 위해 열처리 공정을 진행한다. 열처리로에 여러 개의 강괴를 장입하여 가열하기 때문에 에너지 비용이 많이 소모된다. 열처리 공정 비용은 열처리 공정의 종류와 장입되는 강괴들의 특성 및 수량 등에 따라서 결정된다. 열처리로에 장입할 강괴 조합을 최적화함으로써 비용을 최소화시킬 수 있다. 따라서 본 논문에서는 비용 예측 모형을 이용하여 열처리로 작업 계획을 최적화하는 방안을 제안한다. 비용 예측 모형은 IoT 인프라를 기반으로 수집한 공정 데이터를 이용하여 학습한다. 다양한 열처리로 작업 계획은 학습한 모형 기반의 시뮬레이션을 통해 평가하여 유전 알고리즘을 기반으로 최적화한다. 최적의 열처리로 작업 계획을 수립함으로써 공정 비용을 최소화하고 에너지 효율을 극대화할 수 있다.

Optimization for the Industrial Production of Traditional Jeju Tofu (제주전통두부의 산업화를 위한 최적공정확립)

  • 오영주;이삼빈;김찬식
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.3
    • /
    • pp.603-608
    • /
    • 2004
  • Traditional Jeju tofu with a hard texture was manufactured by traditional method with a compounded coagulant. The processing condition for industrial production was optimized by determining soaking of soybean, extraction and heat treatment of soymilk as well as concentration and composition of coagulant. Maximum yield of soymilk was obtained by grinding one part of soaked soybean with eight parts of water, and the soluble solid of soymilk was about 8$^{\circ}$Brix. The free thiol group in soymilk was maximally exposed by heating at 10$0^{\circ}C$ for 2 min. A vacuum cooker for heating soymilk was effective for the improvement of yield and texture properties of tofu. The hardness of traditional Jeju tofu was obtained by increasing pressing time and drying by a fan instead of soaking in cold water. Optimization of a traditional tofu production resulted in the increase of total yield and improvement of quality control. Texture of traditional Jeju tofu prepared in industrial production scale was analyzed by instrumental analysis and sensory evaluation. Traditional Jeju tofu showed higher score in the hardness, roasting taste and overall preference compared with a commercial tofu, showing significant difference in 5% significant level..

Analysis of Long-term Stability of Direct Methanol Fuel Cell and Investigation of the Methods to Improve its Performance (직접메탄올 연료전지의 장기운전 특성 분석 및 성능향상 연구)

  • Lee, Hyun-Sook;Bae, Byung-Chan;Lee, Jae-Young;Im, Tae-Hun;Ha, Heung-Yong;Hong, Seong-Ahn
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.1
    • /
    • pp.31-39
    • /
    • 2005
  • Direct methanol fuel cell (DMFC) is considered as a candidate for portable power sources, that could overcome the disadvantages of lithium battery. But in order to attain commercial viability the long term stability of the DMFC should be achieved. Understanding the long-term behavior of membrane-electrode assembly (MEA) is a prerequisite to this purpose and the optimization of the MEA is also needed. In this study we have investigated the changes in performance and electrochemical properties of the MEA during extended operation and the effects of heat treatment of MEA on the long-term performance. The MEAs have been treated in an autoclave with saturated water vapor at 120$^{\circ}C$, vacuum oven at 140$^{\circ}C$ and boiling in organic solvents. The autoclaved MEA was found to be have the best long term performance. The on-off operation mode also increased the performance probably due to effective removal of products from the electrodes. Physical and electrochemical analyses using a scanning electron microscope, impedance analyser and half-cell technique have been done to characterize the MEAs.