• Title/Summary/Keyword: heat transfer coefficient

Search Result 1,589, Processing Time 0.025 seconds

Impacts of C60-Ionic Liquids (ILs) Interactions and IL Alkyl Chain Length on C60 Dispersion Behavior: Insights at the Molecular Level

  • Wang, Zhuang;Tang, Lili;Wang, Degao
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2679-2683
    • /
    • 2014
  • Mechanisms underlying the impacts of interactions between carbon nanoparticles (CNPs) and ionic liquids (ILs) on the physicochemical behavior of CNPs need to be more full worked out. This manuscript describes a theoretical investigation at multiple levels on the interactions of fullerene $C_{60}$ with 21 imidazolium-based ILs of varying alkyl side chain lengths and anionic types and their impacts on $C_{60}$ dispersion behavior. Results show that ${\pi}$-cation interaction contributed to mechanism of the $C_{60}$-IL interaction more than ${\pi}$-anion interaction. The calculated interaction energy ($E_{INT}$) indicates that $C_{60}$ can form stable complex with each IL molecule. Moreover, the direction of charge transfer occurred from IL to $C_{60}$ during the $C_{60}$-IL interaction. Quantitative models were developed to evaluate the self-diffusion coefficient of $C_{60}$ ($D_{fullerene}$) in bulk ILs. Three interpretative molecular descriptors (heat of formation, $E_{INT}$, and charge) that describe the $C_{60}$-IL interactions and the alkyl side chain length were found to be determinants affecting $D_{fullerene}$.

Similarity analysis of a forced uniform flow impinging on a rotating disk in a vapor deposition process (증착공정에서의 회전원판 정체점유동에 대한 상사해석)

  • Song, Chang-Geol;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.3
    • /
    • pp.371-379
    • /
    • 1997
  • A theoretical study for a forced uniform flow impinging on a rotating disk, typically involved in Chemical Vapor Deposition(CVD) and Vapor-phase Axial Deposition(VAD) processes, has been carried out. A set of exact solutions for flow and temperature fields are developed by employing a similarity variable obtained from force balance on a control volume near the disk. The solutions depend on the rotating speed of the disk, .omega., and the forced flow speed toward the disk, a. For constant forced flow speed, the overall boundary layer thickness decreases when the rotating speed increases. Approximately 5%, 15%, and 30% decreases of the thickness are obtained for .omega./a = 2, 5, and 10, respectively, compared to the case of .omega./a = 0 (axisymmetric stagnation point flow). For constant rotating disk speed the boundary layer thickness immediately decreases as the forced flow speed increases, compared to the case of .omega./a .rarw. .inf. (induced flow near a rotating disk). Effects of .omega. and a on heat transfer coefficient are studied and explained with the boundary layer characteristics.

Design Effect of Different Components and Economic Evaluation of an Adsorption Chiller on the System Performance

  • Bidyut B. Saha;Shigeru Koyama;K.C. Amanul Alam;Lee, Jong-Boong
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.17-22
    • /
    • 2002
  • A conventional silica gel/water adsorption chiller has been analyzed numerically. A novel non-dimensional mathematical model has been presented to analyze the design effect of different components of an adsorption chiller. The design parameters of this system are characterized by the number of transfer unit, NTU, of different components and the inert material alpha number, ${\alpha}$of different components of the systems. Results show that condenser NTU$\sub$a/ has the most influential effect on the system performance, which is fellowed by absorber NTU$\sub$e/. It is also seen that coefficient of performance (COP) and non-dimensional specific cooling capacity increases with the increase of NTU$\sub$a/ and NTU$\sub$e/, but decreases with the increase of inert material alpha number. A thermo-economic data of the adsorption chiller and some other heat pump systems those are in practical operation are also presented.

  • PDF

Computational Analysis of 355 nm UV Laser Single-Pulsed Machining of Copper Material Considering the Strain Rate Effect (변형률 속도 효과를 고려한 355 nm UV 레이저 구리재질의 싱글 펄스 전산해석)

  • Lee, Jung-Han;Oh, Jae Yong;Park, Sang Hu;Shin, Bo Sung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.3
    • /
    • pp.56-61
    • /
    • 2010
  • Recently, UV pulse laser is widely used in micro machining of the research, development and industry field of IT, NT and BT products because the laser short wavelength provides not only micro drilling, micro cutting and micro grooving which has a very fine line width, but also high absorption coefficient which allows a lot of type of materials to be machined more easily. To analyze the dynamic deformation during a very short processing time, which is nearly about several tens nanoseconds, the commercial Finite Element Analysis (FEA) code, LS-DYNA 3D, was employed for the computitional simulation of the UV laser micro machining behavior for thin copper material in this paper. A finite element model considering high strain rate effect is especially suggested to investigate the micro phenomena which are only dominated by mechanically pressure impact in disregard of thermally heat transfer. From these computational results, some of dynamic deformation behaviors such as dent deformation shapes, strains and stresses distributions were observed and compared with previous experimental works. These will help us to understand micro interaction between UV laser beam and material.

Characteristics study of the spinning rotor gauges (점성진공계 특성연구)

  • 홍승수;신용현;임종연;정광화
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.4
    • /
    • pp.293-297
    • /
    • 1997
  • Using trace etching method in this study, we measure the energy of argon ions generated in VEBA System which is composed of Marx Generater and Pulse Forming Line. In this system the electron beam of 240 kV, 30 kA, 60 ns is generated. Argon ions are formed through the electron beam ionization of a gas cloud injected by a fast puff valve. Thus argon ions are accelerated into vacuum drift tube by a virtual cathode and seperated with electron beam, consequently, they heat the trace etching plates made of aluminum thin films. The energy of argon ions are determined by the number of aluminum thin films penetrated by the ions. This experimental value corresponds with the theoretical value.

  • PDF

Prediction of Thermal Diffusivities of Fish Meat Paste Products 3. Influence of Heating Medium on the Thermal Diffusivities (연제품류의 열확산도 추정에 관한 연구 3. 가열매체의 열확산도에 대한 영향)

  • HAN Bong-Ho;CHOI Soo-Il;KIM Jong-Chul;BAE Tae-Jin;CHO Hyun-Duk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.21 no.5
    • /
    • pp.277-287
    • /
    • 1988
  • In this paper, the influence of heating medium on the thermal diffusivities of fish meat paste products was studied. Model products were heated in boiling water, saturated steam and soybean oil. The differences in temperature raise of the products were interpreted with Biot number of the products. Because of the large overall heat transfer coefficient of heating medium, the temperature raise of the products in boiling water and saturated steam was fast and the Biot number of the products could be recognized as infinite. But the temperature raise of the products in soybean oil was slow and the Biot number of the products was less than 50.

  • PDF

Effect of Parameters in Evaporative Removal Process by Absorption of a CW Laser (연속 레이저 흡수에 의한 증발제거 과정의 관련 인자 영향 고찰)

  • 김진윤;송태호
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.67-76
    • /
    • 1995
  • Explosive evaporative removal process of biological tissue by absorption of a CW laser has been simulated by using gelatin and a multimode Nd: YAG laser. Because the point of maximun temperature of laser-irradiated gelatin exists below the surface due to surface cooling, evaporation at the boiling temperature is made explosively from below the surface. The important parameters of this process are the conduction loss to laser power absorption (defined as the conduction-to-laser power parameter, Nk), the convection heat transfer at the surface to conduction loss (defined as Bi), dimensionless extinction coefficient (defined as BrJ, and dimensionless irradiation time (defined as Fo). Dependence of Fo on Nk and Bi has been observed by experiment, and the results have been compared with the numerical results obtained by solving a 2-dimensional conduction equation. Fo and explosion depth (from the surface to the point of maximun temperature) are increased when Nk and Bi are increased. To find out the minimum laser power for explosive evaporative removal process, steady state analysis has been also made. The limit of Nk to induce evaporative removal, which is proportional to the inverse of the laser power, has been obtained.

  • PDF

Evaluation of Thermal Behavior of Oil-based $Al_2O_3$ Nanofluids (오일 기지 알루미나 나노유체의 열적거동 평가)

  • Choi, Cheol;Yoo, Hyun-Sung;Oh, Je-Myung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.176-177
    • /
    • 2006
  • Two kinds of alumina nanofluids are prepared by dispersing $Al_2O_3$ nanoparticles m transformer oil. The thermal conductivity of the nanoparticle-oil mixtures increases with particle volume fraction and thermal conductivity of the solid particle itself. The $Al_2O_3$ nanoparticles at a volume of 0.5% can increase the thermal conductivity of the transformer oil by 5.7%, and the overall heat transfer coefficient by 20%. From the natural convection test using a prototype transformer, the cooling effect of $Al_2O_3$-oil nanofluids on the heating element and oil itself is confirmed. However, excessive quantities of the surfactant have a harmful effect on viscosity, and thus it is strongly recommended to control the addition of the surfactant with great care.

  • PDF

Prevention of Particulate Scale with a New winding Method in the Electronic Descaling Technology (새 도선 감는 방법을 적용한 전기장 이용 스케일 제거)

  • Son, Chang-Hyeon;Gu, Sang-Mo;Kim, Chang-Su;Kim, Geon-U
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.658-665
    • /
    • 2002
  • This paper presents a new winding method in electronic descaling (ED) technology. Conventional ED technology Produces an oscillating electric field via Faraday's law to provide the necessary molecular agitation to dissolve mineral ions. However, the proposed method produces an additional agitation force for mineral ions, called Lorentz's force. Experiments were performed using various Renolds numbers. A series of tests was conducted to measure the pressure drop across the test section and the overall heat transfer coefficient as a function of time. In order to accelerate the rate of fouling, artificial hard water, 1000ppm CaCO$_3$, was used throughout the tests. The results show that the new winding method accelerates the collision of the mineral ions, thereby improving the system efficiency. The present study can develope more effective fouling-removing equipment with change of estabishment method of coil.

Review of Steam Jet Condensation in a Water Pool (수조내 증기제트 응축현상 제고찰)

  • 김연식;송철화;박춘경
    • Journal of Energy Engineering
    • /
    • v.12 no.2
    • /
    • pp.74-83
    • /
    • 2003
  • In the advanced nuclear power plants including APR1400, the SDVS (Safety Depressurization and Vent System) is adopted to increase the plant safety using the concept of feed-and-bleed operation. In the case of the TLOFW (Total Loss of Feedwater), the POSRV (Power Operated Safety Relief Value) located at the top of the pressurizer is expected to open due to the pressurization of the reactor coolant system and discharges steam and/or water mixture into the water pool, where the mixture is condensed. During the condensation of the mixture, thermal-hydraulic loads such as pressure and temperature variations are induced to the pool structure. For the pool structure design, such thermal-hydraulic aspects should be considered. Understanding the phenomena of the submerged steam jet condensation in a water pool is helpful for system designers to design proper pool structure, sparger, and supports etc. This paper reviews and evaluates the steam jet condensation in a water pool on the physical phenomena of the steam condensation including condensation regime map, heat transfer coefficient, steam plume, steam jet condensation load, and steam jet induced flow.