• 제목/요약/키워드: heat stress response

검색결과 269건 처리시간 0.028초

Analysis of heat, cold or salinity stress-inducible genes in the Pacific abalone, Haliotis discus hannai, by suppression subtractive hybridization

  • Nam, Bo-Hye;Park, Eun-Mi;Kim, Young-Ok;Kim, Dong-Gyun;Jee, Young-Ju;Lee, Sang-Jun;An, Cheul Min
    • 한국패류학회지
    • /
    • 제29권3호
    • /
    • pp.181-187
    • /
    • 2013
  • In order to investigate environmental stress inducible genes in abalone, we analyzed differentially expressed transcripts from a Pacific abalone, Haliotis discus hannai, after exposure to heat-, cold- or hyposalinity-shock by suppression subtractive hybridization (SSH) method. 1,074 unique sequences from SSH libraries were composed to 115 clusters and 986 singletons, the overall redundancy of the library was 16.3%. From the BLAST search, of the 1,316 ESTs, 998 ESTs (75.8%) were identified as known genes, but 318 clones (24.2%) did not match to any previously described genes. From the comparison results of ESTs pattern of three SSH cDNA libraries, the most abundant EST was different in each SSH library: small heat shock protein p26 (sHSP26) in heat-shock, trypsinogen 2 in cold-shock, and actin in hyposalinity SSH cDNA library. Based on sequence similarities, several response-to-stress genes such as heat shock proteins (HSPs) were identified commonly from the abalone SSH libraries. HSP70 gene was induced by environmental stress regardless of temperature-shock or salinity-stress, while the increase of sHSP26 mRNA expression was not detected in cold-shock but in heat-shock condition. These results suggest that the suppression subtractive hybridization method is an efficient way to isolate differentially expressed gene from the invertebrate environmental stress-response transcriptome.

Comparison of Gene Expression Changes in Three Wheat Varieties with Different Susceptibilities to Heat Stress Using RNA-Seq Analysis

  • Myoung Hui Lee;Kyeong-Min Kim;Wan-Gyu Sang;Chon-Sik Kang;Changhyun Choi
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.197-197
    • /
    • 2022
  • Wheat is highly susceptible to heat stress, which significantly reduces grain yield. In this study, we used RNA-seq technology to analyze the transcript expression at three different time-points after heat treatment in three cultivars differing in their susceptibility to heat stress: Jopum, Keumkang, and Olgeuru. A total of 11,751, 8850, and 14,711; 10,959,7946, and 14,205; and 22,895,13,060, and 19,408 differentially-expressed genes (log2 fold-change > 1 and FDR (padj) < 0.05) were identified in Jopum, Keumkang, and Olgeuru in the control vs. 6-h, in the control vs. 12-h, and in the 6-h vs. 12-h heat treatment, respectively. Functional enrichment analysis showed that the biological processes for DEGs, such as the cellular response to heat and oxidative stress-and including the removal of superoxide radicals and the positive regulation of superoxide dismutase activity-were significantly enriched among the three comparisons in all three cultivars. Furthermore, we investigated the differential expression patterns of reactive oxygen species (ROS)-scavenging enzymes, heat shock proteins, and heat-stress transcription factors using qRT-PCR to confirm the differences in gene expression among the three varieties under heat stress. This study contributes to a better understanding of the wheat heat-stress response at the early growth stage and the varietal differences in heat tolerancea.

  • PDF

OsHSF7 gene in rice, Oryza sativa L., encodes a transcription factor that functions as a high temperature receptive and responsive factor

  • Liu, Jin-Ge;Qin, Qiu-lin;Zhang, Zhen;Peng, Ri-He;Xiong, Ai-Sheng;Chen, Jian-Min;Yao, Quan-Hong
    • BMB Reports
    • /
    • 제42권1호
    • /
    • pp.16-21
    • /
    • 2009
  • Three novel Class A genes that encode heat shock transcription factor (HSF) were cloned from Oryza Sativa L using a yeast hybrid method. The OsHSF7 gene was found to be rapidly expressed in high levels in response to temperature, which indicates that it may be involved in heat stress reception and response. Over-expression of OsHSF7 in transgenic Arabidopsis could not induced over the expression of most target heat stress-inducible genes of HSFs; however, the transcription of some HSF target genes was more abundant in transgenic plants following two hours of heat stress treatment. In addition, those transgenic plants also had a higher basal thermotolerance, but not acquired thermotolerance. Collectively, the results of this study indicate that OsHSF7 might play an important role in the response to high temperature. Specifically, these findings indicate that OsHSF7 may be useful in the production of transgenic monocots that can over-express protective genes such as HSPs in response to heat stress, which will enable such plants to tolerate high temperatures.

고온 환경이 젖소의 생산성 및 축사환경에 미치는 영향 연구 (A Study on the Effects of Heat Stress on Feedlot Environment and Productivity of Dairy Cattle)

  • 김별;임정수;조성백;황옥화;양승학
    • 한국축산시설환경학회지
    • /
    • 제20권2호
    • /
    • pp.63-68
    • /
    • 2014
  • Environmental heat stress by global warming has a severe effect on the productivity of livestock and, in particular, on that of dairy cattle. Heat stress during high temperature environment directly and indirectly affects milk yield, milk quality and physiological response. This study was conducted to investigate the effects of heat stress on productivity and physiological responses of livestock. Temperature-humidity data logger were established inside the feedlot for measuring real time changes in the feedlot environment. Milk was collected every day for analysing the productivity of dairy cattle. Blood sample and respiration of dairy cattle were collected once in a week for investigating the physiological response factors. Blood component concentration associated with lipolysis metabolism and milk production showed change during tropical night period. Temperature humidity index (THI) of a specific location inside the feedlot showed continuously high levels.

Improvement of heat and drought photosynthetic tolerance in wheat by overaccumulation of glycinebetaine

  • Wang, Gui-Ping;Hui, Zhen;Li, Feng;Zhao, Mei-Rong;Zhang, Jin;Wang, Wei
    • Plant Biotechnology Reports
    • /
    • 제4권3호
    • /
    • pp.213-222
    • /
    • 2010
  • Within their natural habitat, crops are often subjected to drought and heat stress, which suppress crop growth and decrease crop production. Causing overaccumulation of glycinebetaine (GB) has been used to enhance the crop yield under stress. Here, we investigated the response of wheat (Triticum aestivum L.) photosynthesis to drought, heat stress and their combination with a transgenic wheat line (T6) overaccumulating GB and its wild-type (WT) Shi4185. Drought stress (DS) was imposed by controlling irrigation until the relative water content (RWC) of the flag leaves decreased to between 78 and 82%. Heat stress (HS) was applied by exposing wheat plants to $40^{\circ}C$ for 4 h. A combination of drought and heat stress was applied by subjecting the drought-stressed plants to a heat stress as above. The results indicated that all stresses decreased photosynthesis, but the combination of drought and heat stress exacerbated the negative effects on photosynthesis more than exposure to drought or heat stress alone. Drought stress decreased the transpiration rate (Tr), stomatal conductance (Gs) and intercellular $CO_2$ concentration (Ci), while heat stress increased all of these; the deprivation of water was greater under drought stress than heat stress, but heat stress decreased the antioxidant enzyme activity to a greater extent. Overaccumulated GB could alleviate the decrease of photosynthesis caused by all stresses tested. These suggest that GB induces an increase of osmotic adjustments for drought tolerance, while its improvement of the antioxidative defense system including antioxidative enzymes and antioxidants may be more important for heat tolerance.

Heat Shock Responses for Understanding Diseases of Protein Denaturation

  • Kim, Hee-Jung;Hwang, Na Rae;Lee, Kong-Joo
    • Molecules and Cells
    • /
    • 제23권2호
    • /
    • pp.123-131
    • /
    • 2007
  • Extracellular stresses induce heat shock response and render cells resistant to lethal stresses. Heat shock response involves induction of heat shock proteins (Hsps). Recently the roles of Hsps in neurodegenerative diseases and cancer are attracting increasing attention and have accelerated the study of heat shock response mechanism. This review focuses on the stress sensing steps, molecules involved in Hsps production, diseases related to Hsp malfunctions, and the potential of proteomics as a tool for understanding the complex signaling pathways relevant to these events.

Effects of Long-term Heat Exposure on Adaptive Mechanism of Blood Acid-base in Buffalo Calves

  • Korde, J.P.;Singh, G.;Varshney, V.P.;Shukla, D.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권5호
    • /
    • pp.742-747
    • /
    • 2007
  • In order to investigate the mechanism of adaptation to long-term heat stress, six female buffalo calves of about 7 to 8 months age, were exposed to the cool-comfort environment (THI 65) for 21 days to obtain normal values of blood acid-base. An adaptive response of acid-base regulation was determined to long term (21 days) exposure of buffalo calves to hot-dry (THI 80) and hot-humid (THI 84) conditions. Higher rectal temperature and respiratory rate was recorded under hot-humid exposure compared to hot-dry. Significant reduction in the rectal temperature and respiratory rate on day 21 of hot-dry exposure indicated early thermal adaptation compared to hot-humid. Decreasing rectal temperature and respiratory rate from day 1 to 21 was associated with concurrent decrease in blood pH and pCO2. Increased plasma chloride concentration with low base excess in blood and in extracellular fluid suggested compensatory response to respiratory alkalosis. Reduced fractional excretion of sodium with increased fractional excretion of potassium and urine flow rate indicated renal adaptive response to heat stress.

Effects of a mild heat treatment on mouse testicular gene expression and sperm quality

  • Zhao, Jun;Zhang, Ying;Hao, Linlin;Wang, Jia;Zhang, Jiabao;Liu, Songcai;Ren, Bingzhong
    • Animal cells and systems
    • /
    • 제14권4호
    • /
    • pp.267-274
    • /
    • 2010
  • The decrease in sperm quality under heat stress causes a great loss in animal husbandry production. In order to reveal the mechanism underlying the sperm quality decrease caused by heat stress, we first established a mild heat-treated mouse model. Then, the sperm quality was identified. Further, the testicular proteome profile was mapped and compared with the control using 2D electrophoresis and mass spectrometry. Finally, the differential expressed proteins involved in the heat stress response were identified by real-time PCR and Western blotting. The results showed that heat stress caused a significant reduction in mouse sperm quality (P<0.05). Further, 52 protein spots on the 2D gel were found to differ between the heat-shocked tissues and the control. Of these spots, some repair proteins which might provide some explanation for the influence on sperm quality were found. We then focused on Bag-1, Hsp40, Hsp60 and Hsp70, which were found to be differently expressed after heat shock (P<0.05). Further analysis in this heat-shocked model suggests numerous potential mechanisms for heat shock-induced spermatogenic disorders.

Characterization of a Novel DWD Protein that Participates in Heat Stress Response in Arabidopsis

  • Kim, Soon-Hee;Lee, Joon-Hyun;Seo, Kyoung-In;Ryu, Boyeong;Sung, Yongju;Chung, Taijoon;Deng, Xing Wang;Lee, Jae-Hoon
    • Molecules and Cells
    • /
    • 제37권11호
    • /
    • pp.833-840
    • /
    • 2014
  • Cullin4-RING ubiquitin ligase (CRL4) is a family of multi-subunit E3 ligases. To investigate the possible involvement of CRL4 in heat stress response, we screened T-DNA insertion mutants of putative CRL4 substrate receptors that exhibited altered patterns in response to heat stress. One of the mutants exhibited heat stress tolerance and was named heat stress tolerant DWD1 (htd1). Introduction of HTD1 gene into htd1-1 led to recovery of heat sensitivity to the wild type level, confirming that the decrease of HTD1 transcripts resulted in heat tolerance. Therefore, HTD1 plays a negative role in thermotolerance in Arabidopsis. Additionally, HTD1 directly interacted with DDB1a in yeast two-hybrid assays and associated with DDB1b in vivo, supporting that it could be a part of a CRL4 complex. Various heat-inducible genes such as HSP14.7, HSP21, At2g03020 and WRKY28 were hyper-induced in htd1-1, indicating that HTD1 could function as a negative regulator for the expression of such genes and that these genes might contribute to thermotolerance of htd1-1, at least in part. HTD1 was associated with HSP90-1, a crucial regulator of thermotolerance, in vivo, even though the decrease of HTD1 did not affect the accumulation pattern of HSP90-1 in Arabidopsis. These findings indicate that a negative role of HTD1 in thermotolerance might be achieved through its association with HSP90-1, possibly by disturbing the action of HSP90-1, not by the degradation of HSP90-1. This study will serve as an important step toward understanding of the functional connection between CRL4-mediated processes and plant heat stress signaling.

Heat-Shocked Drosophila Kc Cells Have Differential Sensitivity to Translation Inhibitors

  • Han, Ching-Tack
    • BMB Reports
    • /
    • 제30권1호
    • /
    • pp.55-59
    • /
    • 1997
  • The heat shock response is a universal stress response observed in all organisms and cultured cells. The response is regulated at both the transcriptional and translational level. Heat shocked Drosophila melanogaster Kc cells are used as the system for the study of translational regulation. In this system non-heat shock messages are associated with polysome but are not translated in a heat shocked condition. To figure out the change in the translation machinery. the effects of translation elongation inhibitors were tested on Kc cells. The result showed that the sensitivity of translation to these drugs changed in heat shocked cells. The significant changes were the decreased inhibition of heat shock protein synthesis by cycloheximide, emetine. and puromycin. and the increased inhibition of heat shock protein synthesis by verrucarin A. implying that the translation elongation mechanism in heat shocked cells changed.

  • PDF