• Title/Summary/Keyword: heat stress index

Search Result 140, Processing Time 0.029 seconds

Comparison of Several Heat Stress Indices for the 2016 Heat Wave in Daegu (대구의 2016년 폭염시기 열 스트레스 지표의 비교)

  • Kim, Ji-Hye;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.26 no.12
    • /
    • pp.1399-1405
    • /
    • 2017
  • We compared the spatial distribution of several heat stress indices (the Wet-Bulb Globe Temperature(WBGT) index, Environmental Stress Index (ESI), and Modified Discomfort Index(MDI)) for the heat wave of June 6~August 26, 2016, in Daegu. We calculated the heat stress indices using data from the high density urban climate observation network in Daegu. The observation system was established in February. 2013. We used data from a total of 38 air temperature observation points (23 thermometers and 18 automatic weather stations). The values of the heat stress indices indicated that the danger level was very high from 0900-2000h in downtown Daegu. The daily maximum value of the WBGT was greater than or equal to $35^{\circ}C$. The differences in the heat stress indices from downtown and rural areas were higher in the daytime than at nighttime. The maximum difference was about 4 before and after 1400h, and the time variations of the heat stress indices corresponded well. Thus, we were able to confirm that the ESI and MDI can be substituted with the WBGT index.

Challenges in Selecting an Appropriate Heat Stress Index to Protect Workers in Hot and Humid Underground Mines

  • Roghanchi, Pedram;Kocsis, Karoly C.
    • Safety and Health at Work
    • /
    • v.9 no.1
    • /
    • pp.10-16
    • /
    • 2018
  • Background: A detailed evaluation of the underground mine climate requires extensive measurements to be performed coupled to climatic modeling work. This can be labor-intensive and time-consuming, and consequently impractical for daily work comfort assessments. Therefore, a simple indicator like a heat stress index is needed to enable a quick, valid, and acceptable evaluation of underground climatic conditions on a regular basis. This can be explained by the unending quest to develop a "universal index," which has led to the proliferation of many proposed heat stress indices. Methods: The aim of this research study is to discuss the challenges in identifying and selecting an appropriate heat stress index for thermal planning and management purposes in underground mines. A method is proposed coupled to a defined strategy for selecting and recommending heat stress indices to be used in underground metal mines in the United States and worldwide based on a thermal comfort model. Results: The performance of current heat stress indices used in underground mines varies based on the climatic conditions and the level of activities. Therefore, carefully selecting or establishing an appropriate heat stress index is of paramount importance to ensure the safety, health, and increasing productivity of the underground workers. Conclusion: This method presents an important tool to assess and select the most appropriate index for certain climatic conditions to protect the underground workers from heat-related illnesses. Although complex, the method presents results that are easy to interpret and understand than any of the currently available evaluation methods.

Effects of heat stress on body temperature, milk production, and reproduction in dairy cows: a novel idea for monitoring and evaluation of heat stress - A review

  • Liu, Jiangjing;Li, Lanqi;Chen, Xiaoli;Lu, Yongqiang;Wang, Dong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.9
    • /
    • pp.1332-1339
    • /
    • 2019
  • Heat stress exerts a substantial effect on dairy production. The temperature and humidity index (THI) is widely used to assess heat stress in dairy operations. Herein, we review the effects of high temperature and humidity on body temperature, feed intake, milk production, follicle development, estrous behavior, and pregnancy in dairy cows. Analyses of the effects of THI on dairy production have shown that body temperature is an important physiological parameter in the evaluation of the health state of dairy cows. Although THI is an important environmental index and can help to infer the degree of heat stress, it does not reflect the physiological changes experienced by dairy cows undergoing heat stress. However, the simultaneous measurement of THI and physiological indexes (e.g., body temperature) would be very useful for improving dairy production. The successful development of automatic detection techniques makes it possible to combine THI with other physiological indexes (i.e., body temperature and activity), which could help us to comprehensively evaluate heat stress in dairy cows and provide important technical support to effectively prevent heat stress.

Relationship between Summer Heat Stress (Perceived Temperature) and Daily Excess Mortality in Seoul during 1991~2005 (인지온도를 이용한 여름철 폭염 스트레스와 일 사망률 증가와의 관련성 연구: 1991~2005, 서울)

  • Lee, Dae-Geun;Byon, Jae-Young;Choi, Young-Jean;Kim, Kyu-Rang
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.3
    • /
    • pp.253-264
    • /
    • 2010
  • This study investigates the relationship between daily mortality and heat stress in Seoul, using perceived temperatures (PT) derived from a heat budget model. During the summer season, observed PT intensity showed the biggest magnitude of summer heat stress from the middle 10 days of July to the first 10 days of August. The elderly (65 and above) were found to be the most vulnerable to heat stress. The threshold PT, with a significant increase in excess mortality, was $38^{\circ}C$. No time lagged effect was observed with summer heat stress, while a high correlation was observed between anomalies in PT and relative deviation of mortality. A comparison of the heat index and the discomfort index with excess mortality revealed that the discomfort index underestimated excess mortality, whereas the heat index could not appropriately explain the increase in excess mortality correlated with the increase in excess heat. In contrast, PT was found to be the weather element that best represents excess mortality due to heat stress, and is thus expected to serve as a more reliable forecast index of human biometeorology.

Effects of heat stress on conception in Holstein and Jersey cattle and oocyte maturation in vitro

  • Jihwan Lee;Doosan Kim;Junkyu Son;Donghyeon Kim;Eunjeong Jeon;Dajinsol Jung;Manhye Han;Seungmin Ha;Seongsoo Hwang;Inchul Choi
    • Journal of Animal Science and Technology
    • /
    • v.65 no.2
    • /
    • pp.324-335
    • /
    • 2023
  • Korea, located in East Asia in the northern hemisphere, is experiencing severe climate changes. Specifically, the heat stress caused by global warming is negatively affecting the dairy sector, including milk production and reproductive performance, as the major dairy cattle Holstein-Friesian is particularly susceptible to heat stress. Here, we collected artificial insemination and pregnancy data of the Holstein and the Jersey cows from a dairy farm from 2014 to 2021 and analyzed the association between the conception rate and the temperature-humidity index, calculated using the data from the closest official weather station. As the temperature-humidity index threshold increased, the conception rate gradually decreased. However, this decrease was steeper in the Holstein breed than in the Jersey one at a temperature-humidity index threshold of 75. To evaluate the effects of heat stress on the oocyte quality, we examined the nuclear and cytoplasmic maturation of Holstein (n = 158, obtained from six animals) and Jersey oocytes (n = 123, obtained from six animals), obtained by ovum pick-up. There were no differences in the nuclear maturation between the different conditions (heat stress: 40.5℃, non- heat stress: 37.5℃) or breeds, although the Holstein oocytes seemed to have a lower metaphase II development (p = 0.0521) after in vitro maturation under heat stress conditions. However, we found that the Holstein metaphase II oocytes exposed to heat stress presented more reactive oxygen species and a peripheral distribution of the mitochondria, compared to those of the Jersey cattle. Here, we show that weather information from local meteorological stations can be used to calculate the temperature-humidity index threshold at which heat stress influences the conception rate, and that the Jersey cows are more tolerant to heat stress in terms of their conception rate at a temperature-humidity index over 75. The lower fertility of the Holstein cows is likely attributed to impaired cytoplasmic maturation induced by heat stress. Thus, the Jersey cows can be a good breed for the sustainability of dairy farms for addressing climate changes in South Korea, as they are more resistant to hyperthermia.

Effects of multi-walled carbon nanotubes on the hydration heat properties of cement composites

  • Ha, Sung-Jin;Rajadurai, Rajagopalan Sam;Kang, Su-Tae
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.439-450
    • /
    • 2021
  • In recent years, nano-reinforcing materials are widely utilized in cement composites due to their unique multifunctional properties. This study incorporated multi-walled carbon nanotubes (MWCNTs) into the cementitious composites at ratios of 0.1%, 0.3%, and 0.5%, and investigated their influence on the flowability, mechanical strength, and hydration heat properties. The addition of MWCNTs enhanced the compressive and split tensile strengths approximately by 18-51%. In the semi-adiabatic temperature rise test, the internal hydration heat of the composites reduced by 5%, 9%, and 12% with the increase of MWCNTs in 0.1%, 0.3%, and 0.5%. This study further performed hydration heat analysis and estimated the adiabatic temperature rise, thermal stress, and thermal crack index. The internal hydration heat of the concrete decreased by 5%, 10%, and 13% with the increase of MWCNTs. The thermal stress of the concrete decreased with increase in the addition of MWCNTs, and the obtained temperature crack index was effective in controlling the thermal cracks.

A Study of Heat Stress Characteristics on Workers in Hot Workplace by WBGT Index (WBGT지수를 이용한 온열작업장 근로자의 열피로특성에 관한 연구)

  • 마성준;이내우;설수덕;이진우
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.112-120
    • /
    • 2000
  • We have compared the regulations of hot environment workpaces between Korea and ACGIH, then pointed out some insufficiences of Korean regulations for occupational hygiene and safety. And investigated the heat stress characteristics of laboratory, lathe and foundry working. The metabolic heat loads of those workplaces were obtained as 120, 300 및 660 kcal/hr based on WBGT index. WBGT index could be depended on weather condition, therefore useful for controlling working and rest times etc, but Belding-hatch index was represented by strength of working, definitely this would be convinient result for arranging countermeasures of workers in hot environments by estimating metabolic heat and signs of fatigue.

  • PDF

Acute phase protein mRNA expressions and enhancement of antioxidant defense system in Black-meated Silkie Fowls supplemented with clove (Eugenia caryophyllus) extracts under the influence of chronic heat stress

  • Bello, Alhassan Usman;Sulaiman, Jelilat Aderonke;Aliyu, Madagu Samaila
    • Journal of Animal Science and Technology
    • /
    • v.58 no.11
    • /
    • pp.39.1-39.12
    • /
    • 2016
  • Background: The current study investigates the anti-stress effects of clove (Eugenia caryophyllus) extracts (0, 200, 400, and 600 mg/kg) on serum antioxidant biomarkers, immune response, immunological organ growth index, and expression levels of acute phase proteins (APPs); ovotransferrin (OVT), ceruloplasmin (CP), ceruloplasmin (AGP), C-reactive protein (CRP), and serum amyloid-A (SAA) mRNA in the immunological organs of 63-d-old male black-meated Silkie fowls subjected to 21 d chronic heat stress at $35{\pm}2^{\circ}C$. Results: The results demonstrated that clove extract supplementation in the diet of Silkie fowls subjected to elevated temperature (ET) improve growth performance, immune responses, and suppressed the activities of glutathion peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT), and thioredoxin reductase (TXNRD); reduced serum malonaldehyde (MDA) and glutathione (GSH) concentrations when compared with fowls raised under thermoneutral condition (TC). Upon chronic heat stress and supplementation of clove extracts, the Silkie fowls showed a linear increase in GSH-Px, SOD, CAT, and TXNRD activities (P = 0.01) compared with fowls fed diets without clove extract. ET decreased (P < 0.05) the growth index of the liver, spleen, bursa of Fabricius and thymus. However, the growth index of the liver, spleen, bursa of Fabricius and thymus increased significantly (P < 0.05) which corresponded to an increase in clove supplemented levels. The expression of OVT, CP, AGP, CRP, and SAA mRNA in the liver, spleen, bursa of Fabricius and thymus were elevated (P < 0.01) by ET compared with those maintained at TC. Nevertheless, clove mitigates heat stress-induced overexpression of OVT, CP, AGP, CRP and SAA mRNA in the immune organs of fowls fed 400 mg clove/kg compared to other groups. Conclusions: The results showed that clove extracts supplementation decreased oxidative stress in the heat-stressed black-meated fowls by alleviating negative effects of heat stress via improvement in growth performance, antioxidant defense mechanisms, immunity, and regulate the expression of acute phase genes in the liver and immunological organs.

Evaluation of Heat Stress and Comparison of Heat Stress Indices in Outdoor Work (옥외 작업에서의 온열환경 평가 및 온열지수 비교)

  • Kim, Yangho;Oh, Inbo;Lee, Jiho;Kim, Jaehoon;Chung, In-Sung;Lim, Hak-Jae;Park, Jung-Keun;Park, Jungsun
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.2
    • /
    • pp.85-91
    • /
    • 2016
  • Objectives: The objective of this study was to assess heat stress, compare heat stress indices, and evaluate the usefulness of wet bulb globe temperature (WBGT) among outdoor workers exposed to heat during the summer season. Methods: WBGT, dry temperature, and heat index were measured using WBGT measurers (QUESTemp 32 model and QUESTemp 34 model, QUEST, WI, USA) by industrial hygienists from August 27 to September 16, 2015. Heat stress indices were measured at the workplaces of a shipbuilder in Ulsan and a construction site in Daegu. The dry temperature observed by the Automated Synoptic Observing System (ASOS) of the Korea Meteorological Administration was also compared. Results: Dry temperature measured by WBGT is different from that by ASOS. The temperature obtained from ASOS was less than $33^{\circ}C$, above which point a heat wave is forecast by the Korea Meteorological Administration. A heat index above $32.8^{\circ}C$ as a moderate risk was not observed during measurement. WBGT was consistently higher than $22^{\circ}C$, above which the risk of heat-related illness is increased in unacclimated workers involved in work with a high metabolic rate. WBGT was sometimes higher than $28^{\circ}C$, above which the risk of heat-related illness is increased in acclimated workers involved in work with a moderate metabolic rate in September. Conclusion: According to the measurement of heat stress indices, WBGT was more sensitive than heat index and temperature. Thus, general measures to prevent heat-related diseases should be implemented in workplaces during the summer season according to WBGT.

Monitoring of Crop Water Stress with Temperature Conditions Using MTCI and CCI (가뭄과 폭염 조건에서 MTCI와 CCI를 이용한 수분 스트레스 평가)

  • Kyeong-Min Kim;Hyun-Dong Moon;Euni Jo;Bo-Kyeong Kim;Subin Choi;Yuhyeon Lee;Yuna Lee;Hoejeong Jeong;Jae-Hyun Ryu;Hoyong Ahn;Seongtae Lee;Jaeil Cho
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1225-1234
    • /
    • 2023
  • The intensity of crop water stress caused by moisture deficit is affected by growth and heat conditions. For more accurate detection of crop water stress state using remote sensing techniques, it is necessary to select vegetation indices sensitive to crop response and to understand their changes considering not only soil moisture deficit but also heat conditions. In this study, we measured the MERIS terrestrial chlorophyll index (MTCI) and chlorophyll/carotenoid index (CCI) under drought and heat wave conditions. The MTCI, sensitive to chlorophyll concentration, sensitively decreased on non-irrigation conditions and the degree was larger with heat waves. On the other hand, the CCI, correlated with photosynthesis efficiency, showed less sensitivity to water deficit but had decreased significantly with heat waves. After re-irrigation, the MTCI was increased than before damage and CCI became more sensitive to heat stress. These results are expected to contribute to evaluating the intensity of crop water stress through remote sensing techniques.