• 제목/요약/키워드: heat reforming

검색결과 138건 처리시간 0.024초

통합 수증기 개질 시스템의 작동 조건에 대한 수치적 연구 (Parametric Study of an Integrated Steam Methane Reformer with Top-Fired Combustor)

  • 노정훈;정혜미;김동희;엄석기
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.156.1-156.1
    • /
    • 2011
  • It is of great importance to predict operating parameter characteristics of an integrated fuel processor by the increased life-time and system performance. In this study, computational analysis is performed to gain fundamental insights on transport phenomena and chemical reactions in reformer which consists of preheating, steam reforming, and water gas shift reaction beds. Also, a top-fired burner locates inside of the reforming system. The combustor is providing thermal energy necessary for the steam reforming bed which is a endothermic catalytic reactor. Two-dimensional numerical model of the integrated fuel processing system is introduced for the analysis of heat and mass transport phenomena as well as surface kinetics and catalytic process. A kinetic model was developed and then computational results were compared with the experimental data available in the literature. Subsequently, parameter study using the validated steam methane reforming model was conducted by considering operating parameters, i.e. steam to carbon ratio and temperature.

  • PDF

Effect of oxygen distribution for hot spot and carbon deposition minimization in a methane autothermal reforming reactor

  • Lee, Shin-Ku;Bae, Joong-Myeon;Kim, Yong-Min;Park, Joong-Uen;Lim, Sung-Kwang
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.1996-2000
    • /
    • 2008
  • In autothermal reforming reaction, oxygen to carbon ratio (OCR) and steam to carbon ratio (SCR) are significant factors, which control temperature and carbon deposition into the reactor. The OCR is more sensitive than the SCR to affect the temperature distribution and reforming efficiency. In conventional operation, hydrocarbon fuel, steam, and oxygen was homogeneously mixed and injected into the reactor in order to get hydrogen-rich gas. The temperature was abruptly raised due to fast oxidation reaction in the former part of the reactor. Deactivation of packed catalysts can be accelerated there. In the present study, therefore, the effect of the oxygen distribution is introduced and investigated to suppress the carbon deposition and to maintain the reactor in the mild operating temperature (e.g., $700{\sim}800^{\circ}C$). In order to investigate the effect numerically, the following models are adopted; heterogeneous reaction model and two-medium model for heat balance.

  • PDF

Novel reforming of pyrolized fuel oil by electron beam radiation for pitch production

  • Jung, Jin-Young;Park, Mi-Seon;Kim, Min Il;Lee, Young-Seak
    • Carbon letters
    • /
    • 제15권4호
    • /
    • pp.262-267
    • /
    • 2014
  • Pyrolized fuel oil (PFO) was reformed by novel electron beam (E-beam) radiation, and the elemental composition, chemical bonds, average molecular weight, solubility, softening point, yields, and density of the modified patches were characterized. These properties of modified pitch were dependent on the reforming method (heat or E-beam radiation treatment) and absorbed dose. Aromaticity ($F_a$), average molecular weight, solubility, softening point, and density increased in proportion to the absorbed dose of E-beam radiation, with the exception of the highest absorbed dose, due to modification by free radical polymerization and the powerful energy intensity of E-beam treatment. The H/C ratio and yield exhibited the opposite trend for the same reason. These results indicate that novel E-beam radiation reforming is suitable for the preparation of aromatic pitch with a high ${\beta}$-resin content.

촉매유효도 상관식에 기반한 마이크로 채널형 수증기/메탄 개질기의 간략화된 1차원 해석모델의 개발 (Development of Simplified One-dimensional Model for Microchannel Steam/Methane Reformers based on Catalyst Effectiveness Factor Correlations)

  • 오윤석;이대훈;남진현
    • 신재생에너지
    • /
    • 제19권2호
    • /
    • pp.1-12
    • /
    • 2023
  • In this study, an efficient one-dimensional model was developed for predicting microchannel steam/methane reformers with thin washcoat catalyst layers with a focus on low-pressure reforming conditions suitable for distributed hydrogen production systems for fuel cell applications. The governing equations for steam/methane mixture gas flowing through the microchannel reformer were derived considering the species conservation with reforming reactions and energy conservation with external convective heat supply. The reaction rates for the developed model were simply determined through the catalyst effectiveness factor correlations instead of performing complicated calculations for the steam/methane reforming process occurring inside the washcoat catalyst layers. The accuracy of the developed was verified by comparing the results obtained herein with those obtained by the detailed computational fluid dynamics calculation for the same microchannel reformer.

중저온 열원에 의한 메탄 수증기 개질의 형상 인자에 따른 특성 (Geometric Characteristics of Methane Steam Reforming with Low Temperature Heat Source)

  • 신가희;윤진원;유상석
    • 대한기계학회논문집B
    • /
    • 제40권12호
    • /
    • pp.793-799
    • /
    • 2016
  • 폐열을 열원으로 사용하는 저온형 개질기는 하이브리드 연료전지 시스템의 효율향상을 위해 사용되고 있다. 저온형 개질기의 경우 저온의 열적상태에서 높은 열전달 효율을 내는 것이 중요하며, 이를 위한 형상 최적화의 과정이 필요하다. 본 연구에서는 제한된 열공급 상황에서 개질기의 형상인자 변화에 따른 온도 및 반응특성을 전산해석을 통하여 알아보고자 하였다. 해석결과 저온형 개질기의 반응이 활발히 일어나는 영역은 온도가 높은 후단에 제한되는 현상을 보여 고온형 개질기와의 차이를 나타내었다. 또한 개질기의 기체공간속도(Gas hourly space velocity, GHSV)를 감소시키거나 열전달 면적을 증대시킴으로써 효율을 향상 시킬 수 있음을 확인하였고 종횡비에 따른 해석을 실시한 결과 저온형 개질기의 경우 길이방향보다는 반경방향의 열전달을 증대시키는 방법이 효과적임을 확인하였다.

화학축열을 통한 태양열 저장을 위한 메탄의 스팀개질 반응 특성(Part 2. 조업변수의 영향) (Steam Reforming of Methane for Chemical Heat Storage As a Solar Heat Storage(Part 2. Parameters Effect on Methane Conversion))

  • 양동현;정찬화;한귀영;서태범;강용혁
    • 한국태양에너지학회 논문집
    • /
    • 제21권4호
    • /
    • pp.29-35
    • /
    • 2001
  • 고온의 태양열을 저장하기 위한 한 방편으로 화학반응을 이용한 태양에너지의 화학에너지로의 변환공정을 고려하였다. 태양에너지의 저장은 메탄의 수증기 개질반응으로 선정하였으며, 이 흡열반응에서 메탄의 전화율에 영향을 미치는 조업변수의 영향을 살펴보았다. 반응기는 직경 0.635 cm 그리고 길이 30 cm인 스테인레스 관을 코일형태로 제작하였다. 메탄의 수증기 개질반응에서 반응물의 공간속도, 그리고 스팀/메탄 비율에 따라서 메탄의 전화율과 CO의 선택도가 영향을 받음을 알 수 있었다. 이 실험을 통하여 최적의 수증기/메탄 비율을 확인하였다.

  • PDF

고온 태양열 화학반응기 열전달 성능 평가 (Estimation of Heat Transfer Characteristics for a Solar Chemical Reactor)

  • 강경문;이주한;조현석;서태범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2221-2226
    • /
    • 2008
  • The objective of this paper is to describe the experimental and numerical investigation of the analysis of the heat transfer in a solar chemical reactor. These are compared about methane steam reforming process in the solar chemical reactor which was a volumetric absorber consisting of honeycomb and a multilayered catalyst supports. With this high operating temperature, convective heat loss, thermal fracture are important features for designing SCR. In order to estimate the system performance and to design the actual solar reactor with various conditions, CFD analysis was used in this study. The nickel oxide porous metal is inserted inside the solar chemical reactor to increase the conversion rate of the reforming reaction. Simulation has been carried out based on the experimental data. According to the simulation results, the optimum methane-steam mole ratio and thickness and numbers of catalyst supports were obtained.

  • PDF

고온용 연료전지 미반응 가스를 이용한 촉매연소-개질 통합 반응기의 성능 비교 (Performance Comparison of Integrated Reactor with Steam Reforming and Catalytic Combustion using Anode Off-Gas for High Temperature Fuel Cells)

  • 강태규;성해정;이상민;안국영;김용모
    • 한국수소및신에너지학회논문집
    • /
    • 제22권6호
    • /
    • pp.800-809
    • /
    • 2011
  • The reaction characteristics of an integrated reactor with steam reformer and catalytic combustor using anode offgas for high temperature fuel cells such as MCFC and SOFC have been experimentally investigated in the present study. The coupled reactor had a coaxial cylindrical shape, and the inner and the outer tube was packed with combustion catalysts and reforming catalysts, respectively. Thus, the endothermic steam reforming could proceed by absorbing heat from catalytic combustion of anode offgas. Results show that increasing inlet temperature and decreasing excess air ratio increased the reformer temperature, which led to the increase in $H_2$ yield. The reforming performance for SOFC conditions was better than that for MCFC conditions since the composition of flammable components became smaller for MCFC cases. Measured reformate composition under various test conditions correlated well with thermal equilibrium composition.

고온 태양열 화학 반응기에서의 메탄-수증기 개질반응 시뮬레이션 (Methane-Steam Reforming Simulation for a High Temperature Solar Chemical Reactor)

  • 고요한;서태범
    • 한국태양에너지학회 논문집
    • /
    • 제29권1호
    • /
    • pp.44-49
    • /
    • 2009
  • Steam reforming of methane in the high temperature solar chemical reactor bas advantage in its heating method. Using concentrated solar energy as a heating source of the reforming reaction can reduce the $CO_2$ emission by 20% compared to hydrocarbon fuel. In this paper, the simulation result of methane-steam reforming on a high temperature solar chemical reactor(SCR) using Fluent 6.3.26 is presented. The high temperature SCR is designed for the Inha Dish-1, a Dish type solar concentrator installed in Songdo city. Basic SCR performance factors are referred to the former researches of the same laboratory. Inside the SCR porous metal is used for a receiver/reactor. The porous metal is carved like a dome shape on the incident side to increase the heat transfer. Also, ring-disc set of baffle is inserted in the porous metal region to increase the path length. Numerical and physical models are also used from the former researches. Methane and steam is mixed with the same mole fraction and injected into the SCR. The simulation is performed for a various inlet mass flow rate of the methane-steam mixture gas. The result shows that the average reactor temperature and the conversion rate change appreciably by the inlet mass flow rate of 0.0005 kg/s.

운전조건 변경에 따른 통합형 촉매연소-개질반응기의 열적 거동 및 반응 특성 (Thermal Behaviors and Reaction Characteristics of an Integrated Reactor with Catalytic Combustion-Reforming According to Operation Conditions)

  • 강태규;이상민;안국영;김용모
    • 대한기계학회논문집B
    • /
    • 제35권6호
    • /
    • pp.641-648
    • /
    • 2011
  • 고온 발전용 연료전지인 MCFC의 연료극에서 방출되는 미반응 가스를 촉매연소의 열원으로 사용하고, 촉매연소 반응에 의해 발생한 열을 개질 반응에 필요한 공급열로 이용하는 통합형 촉매연소-개질 반응기에 있어서 MCFC의 운전 조건 변경에 따른 반응기의 열적 거동과 반응 특성을 실험적으로 연구하였다. 특히, 연료극에서 연료 이용률을 변동될 때 슬립가스의 조성이 바뀌는 것을 고려하여 촉매연소측에 공급해줄 혼합가스의 조성을 실험조건으로 설정하였다. 또한 개질측에서는 S/C(수증기/탄소)의 비를 운전조건의 변동 조건으로 설정하였다. 실험적으로 얻어진 데이터는 보다 현실적인 통합형 촉매연소-개질반응기를 설계하고 제작하는데 필요한 기본 자료로 활용될 수 있을 것이다.