• Title/Summary/Keyword: heat recovery

Search Result 1,000, Processing Time 0.026 seconds

Characteristics of Sweet Persimmon Treated with Protopectinase from Bacillus subtilis EK11 (Bacillus subtilis EK11 유래 Protopectinase를 처리한 단감의 특성)

  • 이대희;이승철;황용일
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.1
    • /
    • pp.29-34
    • /
    • 2003
  • In development of the processed food, it is important not only to make the food delicious but to enhance its storage span and thermal stability without change in color, which greatly affects the tastes. Protopectinase (PPase) from Bacillus subtilis EK11 hydrolyses or dissolves protopectin in the middle lamella of plant tissues with the resultant separation of plant cells from each other, called enzymatic maceration. With the PPase, persimmon was enzymatically macerated to separate cells to primary cell wall without damage. Recovery rates of persimmon treated with PPase and mechanical maceration were 95% and 85%, respectively. Total and reducing sugars, crude protein and fat in the enzymatic maceration were well preserved as in the mechanical maceration. Importantly, over 50% of vitamin C, which is the most unstable component during the mechanical maceration, remained with an intact form for one day after the enzymatic treatment. When the suspensions of persimmon macerated with both treatments were stored at 4$^{\circ}C$ for 9 days, the mechanically macerated persimmon suspension was decolorized, whereas decolorization, was not found in the enzymatically macerated persimmon suspension. Moreover the mechanically macerated persimmon was greatly deteriorated after heat treatment at 10$0^{\circ}C$ for 60 min, whereas cells of the enzymatically separated persimmon suspension appeared to be stable, indicating increased thermal stability Thus, the PPase treatment of persimmon could be a better choice for preparation of highly valuable and functional processed food as well as for increase in preservation period.

A Study on the Experimental Measurements and Its Recovery for the Rate of Boil-Off Gas from the Storage Tank of the CO2 Transport Ship (CO2 수송선 저장탱크의 BOG 측정 실험 및 회수에 관한 연구)

  • Park, Jin-Woo;Kim, Dong-Sun;Ko, Min-Su;Cho, Jung-Ho
    • Clean Technology
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • $CO_2$ is generated by the combustion reaction, when getting the energy from fossil fuel. If the carbon dioxide emissions increases more, the global warming problem will become more serious. CCS (carbon capture storage) needs to be developed for the prevention of this. When liquefied $CO_2$ is transported, BOG (boil-off gas) is generated because of several problems. In the study, by injecting liquefied $CO_2$ in two tanks which contains $40m^3$each, the amount of BOG and its composition were measured during 30 days when generating pressure changes and external heat, loading, unloading. In result, 16,040 kg of BOG was generated and the composition has been found out to be 99.95% $CO_2$ and 0.05 % $N_2$. Also, we conducted simulation process for reliquefaction of generated BOG with vapor compression cycle using the PRO/II with PROVISION version 9.2. As a result, the refrigeration cycle of the total circulation flow rate was 42.07 kg/h and the condenser utility consumption was 48.85 kg/h.

Studies on the New Analytical Methods for Separation and Recovery of Rare Earth Metals (I) : Adsorption Characteristics of U(VI) Ion by New Synthetic Resins with Macrocyclic Compounds (희토류금속 분리 및 회수를 위한 분석화학적 연구 (제1보) : 우라늄(VI)의 분리회수를 위한 선택이온교환수지 합성과 우라늄(VI) 금속이온의 흡착특성)

  • Jung Oh Jin;Hak Jin Jung;Joon Tea Kim
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.358-370
    • /
    • 1988
  • Several new ion exchange resins have been synthesized from chloromethyl styrene-1,4-divinylbenzene(DVB) with 1%, 2%, 4%, and 10%-crosslinking and macrocyclic ligands of cryptand type by interpolymerization method. The adsorption characteristics and the pH, time, solvents and concentration dependence of the adsorption of metal ions by this resin were studied. The correlation between the separation characteristics of uranium, rare earths and transition metal on the resins and the stability constants of complexes with macrocyclic ligands have been examined. The resins were very stable in both acidic and basic media and have good resistance to heat at $280^{\circ}C$. The $UO_2^{+2}$ aqueous solution are not adsorbed on the resins below pH 3.0, but the power of adsorption of $UO_2^{2+}$ increased rapidly above pH 4.0. The optimum equilibrium time for adsorption of metallic ions was twenty minutes and adsorptive power decreased in proportion to crosslinking size of the resins and order of dielectric constants of solvents used and the selective sequence for metal cations is in the order of $UO_2^{2+},\;Cu^{2+}\;and\;Nd^{3+}$.

  • PDF

Development of the Pre-treatment Technology for LNG-FPSO (LNG-FPSO용 천연가스 전처리 기술 개발)

  • Jee, Hyun-Woo;Lee, Sun-Keun;Jung, Je-Ho;Min, Kwang-Joon;Kim, Mi-Jin
    • Plant Journal
    • /
    • v.9 no.3
    • /
    • pp.38-42
    • /
    • 2013
  • Submarine gas fields have focused because of the increasing fuel cost, the environmental regulations, and the safety & NIMBY problems. LNG-FPSO which is available for acid gas removal, recovery of the condensate & LPG and Liquefaction in topside process is one of high technology offshore structures. On the other hands, it is necessary to verify the pre-treatment efficiency by the ship motion and to apply to the design for LNG-FPSO. This study is to develop the pre-treatment technology for LNG-FPSO as taking account to the process efficiency by ship motion effects and the area optimization. Based on the simulation results, it founds that hybrid process shows the low circulate rate, the low heat duty and the small size of column dimensions compared to typical amine process. It will be verified the process efficiency in the various conditions by sea states as performing the 6-DOF motion test and CFD simulation.

  • PDF

Analysis of Total Loss of Feedwater Event for the Determination of Safety Depressurization Bleed Capacity (안전감압계통의 방출유량을 결정하기 위한 완전급수상실사고 해석)

  • Kwon, Young-Min;Song, Jin-Ho;Ro, Tae-Sun
    • Nuclear Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.470-482
    • /
    • 1995
  • The Ulchin 3&4, which are 2825 MWt PWRs, adopted Safety Depressurization System (SDS) to mitigate the beyond design basis event of Total Less of Feedwater(TLOFW). In this study the results and methodology of the analyses for the determination of SDS bleed capacity are discussed. The SDS design bleed capacity has been determined from the CEFLASH-4AS/REM simulation according to the following design criteria : 1) Each SDS flow path, in conjunction with one of two High Pressure Safety Injection (HPSI) pumps, is designed to have a sufficient capacity to prevent core uncovery if one SDS path is opened simultaneously with the opening of the Pressurizer Safety Valves (PSVs). 2) Both SDS bleed paths are designed to have sufficient total capacity with both HPSI pumps operating to prevent core uncovery if the Feed and Bleed (F&B) initiation is delayed up to thirty minutes from the time of the PSVs lift. To verify the results of CEFLASH-4AS/REM simulation a comparative analysis kas also been per-formed by more sophisticated computer code, RELAP5/MOD3. The TLOFW event without operator recovery and TLOFW event with F&B are analyzed. The predictions by the CEFLASH-4AS/REM of the transient too phase system behavior are in good qualitative and quantitative agreement with those by the RELAP5/MOD3 simulation. Both of the results of analyses by CEFLASH-4AS/REM and RELAP5/MOD3 have demonstrated that decay heat removal and core inventory make-up can be successfully accomplished by F&B operation during now event for the Ulchin 3&4.

  • PDF

An Enzyme-Linked Immunosorbent Assay for Quantitation of Soy Proteins in Food (식품 중 대두단백질의 정량분석을 위한 효소면역측정법)

  • Shon, Dong-Hwa;Kim, Hyung-Jung;Eum, Byong-Wook;Kim, Soo-Ho;Kim, Soon-Mi
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.991-996
    • /
    • 2000
  • Enzyme-linked immunosorbent assay was developed for the analysis of soy protein in foods. Competitive indirect ELISA (ciELISA) was established by using specific antibodies against the heat-stable acidic subunits (AS) of glycinin. Soy proteins in each sample used in this study were solublized in the presence of urea and DTT and boiled at $100^{\circ}C$ for 1hr and then were renatured with a cystine-containing solution. After these treatments, each isolated soy protein (ISP) heated at 60, 70, 80, $90^{\circ}C$ for 10 minutes showed almost the same curve as unheated one in the ciELISA. The detection limit of ISP was 0.3 ${\mu}g/mL$. Anti-AS antibodies have very low reactivities less than 0.1% toward non-meat proteins such as skim milk and casein and did not show any reactivities toward egg white powder and ovalbumin. When laboratory-made sausages containing ISP of $0.5{\sim}3%$ were assayed by ciELISA, the mean recovery was about 83% (C.V., 19%). In addition, the average content of soy protein in commercial sausages was 1.27%.

  • PDF

National Disaster Scientific Investigation and Disaster Monitoring using Remote Sensing and Geo-information (원격탐사와 공간정보를 활용한 국가 재난원인 과학조사 및 재난 모니터링)

  • Kim, Seongsam;Kim, Jinyoung;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.763-772
    • /
    • 2019
  • High-resolution satellites capable of observing the Earth periodically enhance applicability of remote sensing in the field of national disaster management from national disaster pre-monitoring to rapid recovery planning. The National Disaster Management Research Institute (NDMI) has been developed various satellite-based disaster management technologies and applied to disaster site operations related to typhoons and storms, droughts, heavy snowfall, ground displacement, heat wave, and heavy rainfall. Although the limitation of timely imaging of satellite is a challenging issue in emergent disaster situation, it can be solved through international cooperation to cope with global disasters led by domestic and international space development agencies and disaster organizations. This article of special issue deals with the scientific disaster management technologies using remote sensing and advanced equipments of NDMI in order to detect and monitor national disasters occurred by global abnormal climate change around the Korean Peninsula: satellite-based disaster monitoring technologies which can detect and monitor disaster in early stage and advanced investigation equipments which can collect high-quality geo-information data at disaster site.

Development of Steam Cleaning Technique to Improve Removal Efficiency of Membrane Fouling Matter in Water Treatment Process Using Ceramic Membrane (정수처리용 세라믹 분리막의 막오염 물질의 제거 효율 향상을 위한 스팀세정 기법 개발)

  • Kang, Joon-Seok;Park, Seo Gyeong;Lee, Jeong Eun;Kang, So Yeon;Lee, Jeong Jun;Quyen, Vo Thi Kim;Kim, Han-Seung
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.99-107
    • /
    • 2018
  • This research has developed a high temperature steam cleaning technology using a ceramic membrane with durability against temperature and pressure conditions. In steam cleaning, steam of $120^{\circ}C$ is injected into the ceramic membrane to induce pyrolysis by the endothermic reaction to remove fouling from the membrane. The water quality of raw water was adjusted to turbidity 10, 25 NTU and DOC 2.5 mg/L, and the membrane was uniformly fouled by constant pressure operation at 100, 200, and 300 kPa. Physical backwashing was performed with water and air at a pressure of 500 kPa and steam at $120^{\circ}C$ was injected for 0 to 5 minutes. As the turbidity concentration and the operating pressure increased, the flux decreased by 0.7 to 14.4%. It is confirmed that 10.7 to 53.8% recovery is possible than physical cleaning at the injection of steam for 3 minutes, so it is considered that the steam cleaning of the ceramic membrane is effective. Compared with CEB after NaOCl (300 mg/L) filtration at 25 NTU and 300 kPa of turbidity, the steam cleaning result for 3 minutes was similar to 46.7% of CEB for 3 hours. It has been confirmed that steam cleaning is suitable for a ceramic membrane having excellent heat resistance against high temperature. It was considered to have better cleaning efficiency as compared with general physical backwashing.

Electrochemical Ion Separation Technology for Carbon Neutrality (탄소중립을 지향하는 전기화학적 이온 분리(EIONS) 기술)

  • Hwajoo Joo;Jaewuk Ahn;Sung-il Jeon;Jeyong Yoon
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.331-346
    • /
    • 2023
  • Recently, green processes that can be directly used in an energy-efficient and electrified society to achieve carbon neutrality are attracting attention. Existing heat and pressure-based desalination technologies that consume tremendous amounts of energy are no exception, and the growth of next-generation electrochemical-based desalination technologies is remarkable. One of the most representative electrochemical desalination technologies is electrochemical ion separation (EIONS) technology, which includes capacitive desalination (CDI) and battery desalination (BD) technology. In the research field of EIONS, various system applications have been developed to improve system performance, such as capacity and cyclability. However, it is very difficult to understand the meaning and novelty of these applications immediately because there are only a few papers that summarize the research background for domestic readers. Therefore, in this review paper, we aim to describe the technological advances and individual characteristics of each system in clear and specific detail about the latest EIONS research. The driving principle, research background, and strengths and weaknesses of each EIONS system are explained in order. In addition, this paper concluded by suggesting the future development and research direction of EIONS. Researchers who are just beginning out in EIONS research can also benefit from this study because it will help them understand the research trend.

Repair of Plasma Damaged Low-k Film in Supercritical Carbon Dioxide (초임계이산화탄소를 이용한 플라즈마 손상된 다공성 저유전 막질의 복원)

  • Jung, Jae-Mok;Lim, Kwon-Taek
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.191-197
    • /
    • 2010
  • Repair reaction of plasma damaged porous methyl doped SiOCH films was carried out with silylation agents dissolved in supercritical carbon dioxide ($scCO_2$) at various reaction time, pressure, and temperature. While a decrease in the characteristic bands at $3150{\sim}3560cm^{-1}$ was detectable, the difference of methyl peaks was not identified apparently in the FT-IR spectra. The surface hydrophobicity was rapidly recovered by the silylation. In order to induce effective repair in bulk phase, the wafer was heat treated before reaction under vacuum or ambient condition. The contact angle was slightly increased after the treatment and completely recovered after the subsequent silylation. Methyl groups were decreased after the plasma damage, but their recovery was not identified apparently from the FT-IR, spectroscopic ellipsometry, and secondary ion mass spectroscopy analyses. Furthermore, Ti evaporator was performed in a vacuum chamber to evaluate the pore sealing effect. The GDS analysis revealed that the open pores in the plasma damaged films were efficiently sealed with the silylation in $scCO_2$.