• Title/Summary/Keyword: heat processing

Search Result 1,503, Processing Time 0.026 seconds

An Experimental Investigation of the Heat Transfer Characteristics on the Endwall Surface Within the Plane Turbine Cascade (선형 터빈케스케이드 끝벽의 열전달 특성에 관한 연구)

  • 양장식;나종문;이기백
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2386-2398
    • /
    • 1995
  • The paper describes the results of an experimental investigation of the heat transfer rate on the endwall surface within the plane turbine cascade passage and includes the effect of the heat transfer for the two different boundary layer thicknesses and Reynolds numbers. The limiting streamlines on the endwall surface have been visualized by the oil film method in order to compare with the endwall heat transfer. The hue-capturing method using the termochromatic liquid crystals with great spatial resolution has been used to provide the local distribution of the endwall heat transfer coefficients. Because the detailed contours of the local heat transfer coefficients over the entire endwall can be obtained from the hue-capturing method, it has been possible to obtain information on the endwall heat transfer within the plane turbine cascade passage from these heat transfer contours.

An Analytical Study on the Preheating Effect of Flat Workpiece in Thermally Assisted Machining by Multi Heat Sources (다중열원 보조가공을 위한 평판 시편의 예열 효과에 관한 해석적 연구)

  • Moon, Sung-Ho;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.8
    • /
    • pp.629-634
    • /
    • 2016
  • Laser-assisted machining (LAM) is one of the most effective methods of processing difficult-to-cut materials, such as titanium alloys and various ceramics. However, it is associated with problems such as the inability of the laser heat source to generate an appropriate preheating temperature. To solve the problem, thermally assisted machining with multiple heat sources is proposed. In this study, thermal analysis of multiple heat sources by laser and arc is performed according to power, heat source size, and leading heat source position. Then, the results are analyzed according to each condition. The results of this analysis can be used as a reference to predict preheating temperature in thermally assisted machining with multiple heat sources.

Dispersion Effect of Hydration Heat in Mass Concrete Using Embedded Heat Pipe (매입형 히트파이프를 이용한 매스콘크리트 수화열 분산 효과)

  • Kim, Myung-Sik;Youm, Chi-Sun;Baek, Dong-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.85-90
    • /
    • 2009
  • Although most of existing hydration heat control methods show a certain degree of hydration heat control, generally, there are many problems as mentioned above. Therefore, our laboratory previously developed a hydration heat control method using an exposed heat pipe, which solves most of these problems and simultaneously displays excellent hydration heat control. Unfortunately, even this method had some problems such as the processing, transport, and assembly of heat pipes, and the surface treatment of a cut plane after pouring, and hardening concrete. Therefore, in this study, a hydration heat control method using an embedded pipe has been developed with the expectation that this method solves those problems in hydration heat control using an exposed heat pipe. As a result of the experiment, the peak temperature of ECHP and ICHP specimen about $4.5{\sim}6.5^{\circ}C$ than the OPC specimen and the probability of thermal cracked generated in ECHP and ICHP specimen decreased up to $13{\sim}20%$. Finally, it was confirmed in this study that the hydration heat control method using an embedded heat pipe is significantly more superior and cost effective than the existing method of an exposed one.

Characteristics of Thermal Permeation of Marine Canned Products with Different Vacuum Conditions (수산물 조미통조림 제품의 진공도별 열침투 특성)

  • KIM Dong-Soo;RYU Jae-Sang;YANG Seung-Yong;LEE Keun-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.5
    • /
    • pp.399-402
    • /
    • 2000
  • Very little information is known on the canning of fishery products by vacuum pack. In this paper, some fundamental process conditions for the canning of fishery products were investigated. Moisture-controlled mackerel pike, shrimp and oyster were packed in lacquered cans with spice and additives. After sealing, pressure of the cans were reduced by do-aeration through specially designed gas-tight silicone rubber plug previously attacked to the lid. On this investigation, vacuum can prior to thermal processing were set up to 15, 30, 45 and 60 cmHg, The higher vacuum in cans showed the more quick heat transfer in thermal processing. tinder 60 cmHg vacuum, the heat transfer was more quick than that of the conventional water packed products, Under 15 cmHg, however, the heat transfer was markedly increased by air which acted as an insulator in conductive heat transfer. These results demonstrated that high vacuum was essential secure for the heat processing in vacuum pack.

  • PDF

The Effects of steam heat processing of Helianthus tuberosi Rhizoma on Blood glucose lowering (국우(菊芋) 증자가 혈당강하작용에 미치는 영향)

  • Kim, Jin-Woo;Ha, Mi-Ae;Shin, Yong-Wook
    • The Korea Journal of Herbology
    • /
    • v.32 no.5
    • /
    • pp.39-46
    • /
    • 2017
  • Objective : This study was designed to evaluate the hypoglycemic effects of Helianthus tuberosi Rhizoma extracts and its optimum Heat processing conditions Methods : We investigated the Salivary ${\alpha}$-amylase, pancreas ${\alpha}$-amylase and ${\alpha}$-glucosidase inhibitory activities of extracts from Steam Heated Helianthus tuberosi Rhizoma Ext. The inhibitory activities of a 50% EtOH extract of Steam Heated Helianthus tuberosi Rhizoma Ext against ${\alpha}$-glucosidases were evaluated in this study. Inhibiting these enzymes involved in the absorption of disaccharides significantly decreases the postprandial increase in blood glucose level after a mixed carbohydrate diet. Furthermore, the postprandial blood glucose lowering effect of Steam Heated Helianthus tuberosi Rhizoma Ext. was compared to a known type 2 diabetes drug(Acarbose(R)) in a mice model. Steam Heated Helianthus tuberosus L. Ext significantly reduced the blood glucose increase after glucose loading. Results : The results were confirmed by real-time PCR that after treated with Streptozotocin in L6 cells, induced expression of GLUT4, after the steamed Helianthus tuberosus L. Ext. treated, observed its expression was increased. Steam Heated Helianthus tuberosus L Ext treated 4 hours in L6 cells, cytotoxicity was measured in MTT assay. Its toxicity were 5.7%, 9% and 11.3% at the treatment concentration $12.5{\mu}g/m{\ell}$, $25{\mu}g/m{\ell}$, the $50{\mu}g/m{\ell}$ respectively. Conclusions : Overall, the results of this study indicate that Hypoglycemic effect of Helianthus tuberosi Rhizoma caused by the Steam heat treatment, the optimum Heat processing condition is steamming at $121^{\circ}C$ for 30 min, and it will provide the basis for developing a useful dietary supplement for controlling postprandial hyperglycemia.

Study on the material properties and heating efficiency according to the internal surface coating of the brazed plate heat exchanger (BPHE) (접합 판형 열교환기(BPHE)의 내부 코팅에 따른 소재 특성 및 성능 평가에 관한 연구)

  • Jung, Hangchul;Yang, Hyunseok;Kim, Hyunjong;Park, Jongpo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.6
    • /
    • pp.237-243
    • /
    • 2020
  • In this study, a silane-based coating was applied to improve corrosion resistance and thermal efficiency performance of a brazed plate heat exchanger (BPHE) composed of stainless plate and copper (Cu) brazing. Although the selected coating material was applied to the BPHE by evaluating the corrosion and contact angle according to the coating material, the result of the heat transfer performance evaluation showed that the thermal efficiency was lower than that of the uncoated BPHE. It was analyzed that the adhesion of the coating agent to the flow path inside the BPHE and the residual coating agent on the surface acted as heat resistance, preventing heat transfer. This is due to the structural characteristics of the BPHE in which a fine flow path exists inside, and it is believed that manufacturing after coating the surface of the flow path in advance in the manufacturing process of the BPHE can improve heat transfer performance.

A Study on the Dehumidification effect of Adsorbent at low Temperature (저온에서 흡착제의 제습효과에 대한 연구)

  • Lee, Min-Seok;Jeong, Yun-Ho;Lim, So-Min;Heo, Jae-Woo;Kim, Jong-Ryeol
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.4
    • /
    • pp.177-182
    • /
    • 2020
  • Interest in heat pumps is increasing as an eco-friendly and energy-saving heating method. In particular, in order to develop a heat pump capable of heating in a low-temperature area, research to prevent frost on the surface of the outdoor unit is increasing. In other words, when heating through a heat pump in a low-temperature area, a frost layer is formed on the surface of the outdoor unit, which lowers the heat transfer performance, thereby reducing the heating capacity. Therefore, in this study, an adsorption-type dehumidification system is attached to remove the moisture vapor of the air into the outdoor unit of the heat pump. It is believed that this study can suggest the most effective dehumidification method in low temperature regions. In addition, it is expected that a heat pump with high energy efficiency can be developed by attaching an adsorption dehumidifying system to the front of the outdoor unit of the heat pump.

Investigation into Heat Transfer Characteristics of an Injection Mold by Considering Thermal Contact Resistance (열접촉 저항을 고려한 사출금형의 온도분포특성 고찰)

  • Kim, Kyung-Min;Lee, Ki-Yeon;Sohn, Dong-Hwi;Park, Keun
    • Transactions of Materials Processing
    • /
    • v.20 no.1
    • /
    • pp.29-35
    • /
    • 2011
  • In the design of the injection molding process, various parameters including mold design parameters and molding conditions should be investigated to improve part quality. The mold temperature is one of important processing parameters that affect the flow characteristics, surface appearance, part deformation, mechanical properties, etc. Numerical analyses have been used to predict the temperature distribution of the mold under the given cooling or heating conditions. However, conventional analyses have been performed by assuming that the mold material is a single solid even though a number of plates are assembled to construct an injection mold. In the present study, a numerical approach considering the thermal contact resistance is proposed to provide more reliable prediction of the mold temperature distribution by reflecting the heat-resistance between assembled mold plates.

Fracture Analysis of High Carbon Steel Slabs in a Furnace (가열로 내부에서 발생하는 고탄소강 주편의 판파단 원인 분석)

  • Kim, Y.J.;Jang, M.J.;Asghari-Rad, Peyman;Jung, Y.J.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.3
    • /
    • pp.151-156
    • /
    • 2020
  • In general, the cause of slab cracking during heat treatment has been analyzed with focus on processing conditions. However, in the present work, the cause of cracking is analyzed based on the microstructural evolution during heat treatment. The microstructural analysis indicates that the structure of the slab consists of three main regions as the top, quarter, and center parts. The tensile properties are investigated in each region of the slab in the temperature range from 25 to 350 ℃. Results demonstrate that the cracking is mainly attributed to the thermal stress and specific morphology of the microstructure. It is proposed that the cracking during the heat treatment is related to the presence of inclusion at the ferrite phase which is located at the boundary of pearlite grains.

Wire electrical discharge machining of titanium alloy according to the heat treatment conditions (열처리 조건에 따른 티타늄합금의 와이어 방전가공)

  • 김종업;왕덕현;김원일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.930-933
    • /
    • 2001
  • Titanium Alloys used in this experiment has an good corrosion resistance and specific strength, and is the new material developed for medical supplies living goods. In this study the rolled titanium alloy is done by annealing, solution heat-treatment and aging and then is worked by wire EDM. With changing the process conditions, the process properties of surface hardness, surface roughness, shape of process surface and the analysis of ingredients are measured through experiment repeating main cut and finish cut. It is confirmed to gain good measure values as increasing the number of processing of wire EDM. In this experiment the phenomena of processing is studied and the appropriate process condition is proposed.

  • PDF