• Title/Summary/Keyword: heat pollutant

Search Result 77, Processing Time 0.026 seconds

Analytical trend of perfluorinated compounds in environmental and biota samples (환경 및 생체시료 중 과불화 화합물의 분석 동향)

  • Lee, Won-Woong;Chang, Won-Hee;Pyo, Hee-Soo;Kang, Tae-Seok;Hong, Jong-Ki
    • Analytical Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.331-346
    • /
    • 2010
  • Perfluorinated compounds have characteristics of resistance to heat, acidic, basic conditions and also resist water, oil, grease, pollutant. Futhermore they are used by various industrial material, nowadays, they produced in large scale for indutrial and commercial areas. However, they also resist metabolizing and degrading in environmental system (plant, animal, even human body). Moreover, in animal's bodies, PFCs can be accumulated in organ (eg; liver) and lead to liver cell necrosis even oncogenesis. Perfluorinated compounds are newly registered as new persistent organic pollutants (POPs) on Stockholm convention in 2009. Therefore necessity for analytical methodology for determination of PFCs in various environmental samples is even more increased. This study discussed sample preparation and instrumental conditions for the analysis of PFCs in environmental and biota samples.

A Study on the Effect of Automotive Engine Performance by Using Carbon Nano Colloid Cooling Water (탄소나노콜로이드 냉각수를 사용하여 자동차 엔진성능의 향상에 관한 연구)

  • Yi, Chung-Seob;Lee, Byung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.134-142
    • /
    • 2011
  • Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Exhaust pipes with circular fin were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NOx), carbon dioxide ($CO_2$) and carbon monoxide (CO). In addition, $O_2$ concentration in the exhaust was measured. The designs adopted in this study were about exhaust pipes with solid and hollow fins around them direct surface force measurement in water using a nano size colloidal probe technique. The direct force measurement between colloidal surfaces has been an essential topic in both theories and applications of surface chemistry. As particle size is decreased from micron size down to true Carbon nano Colloid size (<10 nm), surface forces are increasingly important. Nano particles at close proximity or high solids loading are expected to show a different behavior than what can be estimated from continuum and mean field theories. The current tools for directly measuring interaction forces such as a surface force apparatus or atomic force microscopy (AFM) are limited to particles much larger than nano size. This paper use Water and CNC fluid at normal cooling system of EGR. Experimental result showed all good agreement at Re=$2.54{\times}10^4$ by free convection and Re=$3.36{\times}10^4$ by forced air furnace.

The Fabrication of Thermal Sprayed Photocatalytic $TiO_{2}$ Coating on Bio-degradable Plastic

  • Bang, Hee-Seon;Bang, Han-sur
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.387-392
    • /
    • 2005
  • For the production of further functional bio-degradable plastic(polybutylene succinate:PBS) with $TiO_{2}$ as photocatalyst, which shows the decomposition of detrimental organic compound and pollutant under ultraviolet irradiation, we attempted to prepare $TiO_{2}$ coatings on PBS substrate by HVOF and plasma spraying techniques under various conditions. The microstructures of coatings were characterized with SEM and XRD analysis, and the photocatalytic efficiency of coatings was evaluated through the photo degradation of gaseous acetaldehyde. The effects of primary particle size and spraying parameters on the formation behavior, photo catalytic performance and mechanical characteristics of the coatings have been investigated. The results indicated that with respect to both the HVOF sprayed $P_{200}$ and $P_{30}$ coatings, the high anatase ratio off 100% can be achieved regardless of fuel gas pressure. On the other hand, the HVOF sprayed $P_{7}$ coating exhibited largely decreased anatase ratio (from 100% to 49.1%) with increasing the fuel gas pressure, which may be attributed to the much higher susceptibility to heat of 7nm agglomerated powder. In terms of photocatalytic efficiency, HVOF sprayed $P_{200}$ and $P_{30}$ coatings seem to predominate as compared to that of plasma sprayed $P_{200}$ coatings owing to the higher anatase ratio. However, the HVOF sprayed $P_{7}$ coatings didn't show the photo catalytic activity, which may result from the extremely small reaction surface area to the photo-catalytic activity and low anatase ratio. Such functional PBS with new roles is expected to cosiderably contribute to the reduction of aggravated environmel problem.

  • PDF

A Simple Model for Dispersion in the Stable Boundary Layer

  • Kang Sung-Dae;Kimura Fujio;Lee Hwa-Woon;Kim Yoo-Keun
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.1 no.1
    • /
    • pp.35-43
    • /
    • 1997
  • Handling the emergency problems such as Chemobyl accident require real time prediction of pollutants dispersion. One-point real time sounding at pollutant source and simple model including turbulent-radiation process are very important to predict dispersion at real time. The stability categories obtained by one-dimensional numerical model (including PBL dynamics and radiative process) are good agreement with observational data (Golder, 1972). Therefore, the meteorological parameters (thermal, moisture and momentum fluxes; sensible and latent heat; Monin-Obukhov length and bulk Richardson number; vertical diffusion coefficient and TKE; mixing height) calculated by this model will be useful to understand the structure of stable boundary layer and to handling the emergency problems such as dangerous gasses accident. Especially, this simple model has strong merit for practical dispersion models which require turbulence process but does not takes long time to real predictions. According to the results of this model, the urban area has stronger vertical dispersion and weaker horizontal dispersion than rural area during daytime in summer season. The maximum stability class of urban area and rural area are 'A' and 'B' at 14 LST, respectively. After 20 LST, both urban and rural area have weak vertical dispersion, but they have strong horizontal dispersion. Generally, the urban area have larger radius of horizontal dispersion than rural area. Considering the resolution and time consuming problems of three dimensional grid model, one-dimensional model with one-point real sounding have strong merit for practical dispersion model.

  • PDF

Control of Microstructure on TiO2 Nanofibers for Photocatalytic Application (광촉매 응용을 위한 TiO2 나노 섬유의 미세구조 제어)

  • Lee, Chang-Gyu;Kim, Wan-Tae;Na, Kyeong-Han;Park, Dong-Cheol;Yang, Wan-Hee;Choi, Won-Youl
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.417-421
    • /
    • 2018
  • $TiO_2$ has excellent photocatalytic properties and several studies have reported the increase in its specific surface area. The structure of $TiO_2$ nanofibers indicates promising improved photocatalytic properties and these nanofibers can thus potentially be applied in air pollution sensors and pollutant removal filters. In this study, a $TiO_2$ nanofiber was fabricated by the electrospinning method. The fabrication processing factors such as the applied voltage, the distance between nozzle and collector, and the inflow rate of solution were controlled. The precursor was titanium (IV) isopropoxide and as-spun $TiO_2$ nanofibers were heated at $450^{\circ}C$ for 2 h to obtain an anatase crystalline structure. The microstructure was analyzed using field emission scanning electron microscope (FE-SEM) and X-ray diffraction analysis (XRD). The anatase phase was observed in the $TiO_2$ nanofibers after heat treatment. The diameter of $TiO_2$ nanofibers increased with the flow rate, but decreased with decreasing applied voltage and nozzle to collector distance. The diameter of $TiO_2$ nanofibers was controlled in the range of 364 nm to 660 nm. These nanofibers are expected to be very useful in photocatalytic applications.

A Study on Transport and Dispersion of Chemical Agent According to Lagrangian Puff and Particle Models in NBC_RAMS (화생방 보고관리 및 모델링 S/W 시스템(NBC_RAMS)의 라그랑지안 퍼프 및 입자 모델에 따른 화학작용제 이송·확산 분석)

  • Hyeyun Ku;Jiyun Seo;Hyunwoo Nam
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.102-112
    • /
    • 2023
  • This research mainly focuses on the transport and dispersion of chemical agent plume according to the Lagrangian Puff Model and Lagrangian Particle Model of NBC_RAMS(Nuclear, Biological, Chemical Reporting And Modeling S/W System). NBC_RAMS was developed with the purposes of estimating the fate of Chemical, Biological, and Radioactive(CBR) agent plumes and evaluating damages in the Republic of Korea. First, it calculates the local weather pattern, i.e. wind speed, wind direction, and temperature, by considering the effects of land uses and topography. The plume behaviors are calculated by adopting the Lagrangian Puff Model(LPFM) or Lagrangian Particle Model(LPTM). In this research, we assumed a virtual chemical agent exposure event in a stable atmospheric condition during the summer season. The plume behaviors were estimated by both LPFM and LPTM on the used area(urbanized and dry area) and the agricultural land. The higher heat flux in the used area led to stronger winds and further downward movement moving of the chemical agent than the farmland. The lateral dispersion of the chemical plume was emphasized in the Lagrangian Puff Model because it adopted Gaussian distribution.

A Study on the Chlorobenzene and Chlorophenol Behavior in Plasma Type Pyrolysis/Gasfication/Melting Process (플라즈마 방식 열분해 가스화용융시설의 공정별 클로로벤젠 및 클로로페놀 배출거동에 관한 연구)

  • Shin, Chan-Ki;Shin, Dae-Yun;Kim, Ki-Heon;Son, Ji-Whan
    • Journal of environmental and Sanitary engineering
    • /
    • v.22 no.2
    • /
    • pp.9-20
    • /
    • 2007
  • The incineration process has commonly used for wastes amount reduction and thermal treatments of pollutants as the technologies accumulated. However, the process is getting negative public images owing to matter of hazardous pollutants emission. Specially dioxins became a main issue and were mostly emitted from municipal solid wastes incineration. In this reason, pyrolysis/gasification/melting process is presented as an alternative of incineration process. The pyrolysis/gasification/melting process, a novel technology, is middle of verification of commercial plant and development of technologies in Korea. But the survey about the pollutant emission from the process, and background data in these facilities is necessary. So in this survey, t is investigated that the behavior of chlorobenzenes and chlorophenols in plasma type pyrolysis/gasification/melting plant of pilot scale. We investigated discharging behavior of each phase of chlorobenzene through each process in the plsasma type pyrolysis/gasification/melting process. From this result, it was found that about 99 percent of particle-phase chlorobenzene was removed, but on the other hand gas-phase chlorobenzene was increased by about 600 percent through heat exchanger, flue gas cooling, system and semi dry absorption bag filter(SDA/BF). Also, this investigation presented that di-chlorobenzene(DCB) tri-chlorobenzene(TCB), tetra-chlorobenzene(TeCB), penta-chlorobenzene (PCB), except mono-chlorobenzene(MCB) and hexa-chlorobenzene(HCB) were increased through the flue gas cooling system and the semi dry absorption bag filter(SDA/BF). It was investigated that concentration of particle-phase chlorophenol was decreased by about 66 percent, but on the other hand, concentration of gas-phase chlorophenol was increased by about 170 percent through heat exchanger, flue gas cooling system, and semi dry absorption bag filter(SDA/BF). Also, it was found that di-chlorophenol(DCP), tri-chlorophenol(TCP), and penta-chlorophenol(PCP) were increased through the flue gas cooling system, and the semi dry absorption bag filter(SDA/BF). It can be considered that small-scale pilot facility and short investigation period might cause the concentration increase through the flue gas cooling system and the semi dry absorption bag filter(SDA/BF). A further study on real-scale pilot facility and accurate investigation may be required.

A Characteristics of Hg, Pb, As and Se Emitted from Small and Medium Size Waste Incinerator Stacks (중.소형 폐기물 소각시설에서 배출되는 수은, 납, 비소, 셀렌 배출특성)

  • Lee, Han-Kook;Moon, Bu-Shik;Lee, Dong-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1205-1214
    • /
    • 2005
  • This study was carried out to investigate the emission characteristics of volatile metals(Hg, As, Se) and semi volatile metals such as Pb from small and medium size municipal solid waste incinerators(MSWIs). The concentrations of Hg, Pb, As and Se in emission gas from small size waste incinerators were higher than those of medium size waste incinerators. This is probably due to less air pollutant control devices and high emission gas temperature of the small size waste incinerators relative to the medium size waste incinerators. Emission gas temperature from small and medium size waste incinerators were divided into 2 groups. The first group was about $100^{\circ}C$ and the second roup in the range of $400{\sim}700^{\circ}C$. The concentrations of emission gas at the second group were Hg $70.43\;{\mu}g/Sm^3$, Pb $0.94\;{\mu}g/Sm^3$, As $9.83\;{\mu}g/Sm^3$ and Se $5.05\;{\mu}g/Sm^3$. The concentrations of Hg, Pb, As and Se at the first group were lower than those found at the second group. Besides, the removal efficiencies of Hg in medium size waste incinerators were $55.2{\sim}95.9%$. Emission gas temperature reduction from waste heat boiler(WHB) contribute to control of Hg. Based on above results, we postulate that the temperature of flue gas should play a very important role in volatile metal control in small and medium size MSWIs. In order to improve the volatile metals removal efficiency, the temperature of cooling system must be controlled and the air pollution control device should be operated properly.

Combustion Characteristic Study of LNG Flame in an Oxygen Enriched Environment (산소부화 조건에 따른 LNG 연소특성 연구)

  • Kim, Hey-Suk;Shin, Mi-Soo;Jang, Dong-Soon;Lee, Dae-Geun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.23-30
    • /
    • 2007
  • The ultimate objective of this study is to develop oxygen-enriched combustion techniques applicable to the system of practical industrial boiler. To this end the combustion characteristics of lab-scale LNG combustor were investigated as a first step using the method of numerical simulation by analyzing the flame characteristics and pollutant emission behaviour as a function of oxygen enrichment level. Several useful conclusions could be drawn based on this study. First of all, the increase of oxygen enrichment level instead of air caused long and thin flame called laminar flame feature. This was in good agreement with experimental results appeared in open literature and explained by the effect of the decrease of turbulent mixing due to the decrease of absolute amount of oxidizer flow rate by the absence of the nitrogen species. Further, as expected, oxygen enrichment increased the flame temperatures to a significant level together with concentrations of $CO_2$ and $H_2O$ species because of the elimination of the heat sink and dilution effects by the presence of $N_2$ inert gas. However, the increased flame temperature with $O_2$ enriched air showed the high possibility of the generation of thermal $NO_x$ if nitrogen species were present. In order to remedy the problem caused by the oxygen-enriched combustion, the appropriate amount of recirculation $CO_2$ gas was desirable to enhance the turbulent mixing and thereby flame stability and further optimum determination of operational conditions were necessary. For example, the adjustment of burner with swirl angle of $30\sim45^{\circ}$ increased the combustion efficiency of LNG fuel and simultaneously dropped the $NO_x$ formation.

Air Pollution and Daily Modality in Seoul (서울시의 대기오염과 일별 사망자 수의 관련성에 대한 시계열적 연구)

  • Cho, Soo-Hun;Kwon, Ho-Jang
    • Journal of Preventive Medicine and Public Health
    • /
    • v.32 no.2
    • /
    • pp.191-199
    • /
    • 1999
  • Objectives: To examine the relationship between air pollution exposure and mortality in Seoul for the years of 1991-1995, Methods: Daily counts of death were analyzed by general additive Poisson model, with adjustment for effects of secular trend, seasonal factor, day of the week, heat wave, temperature, and humidity. Pollution variables were ozone, nitrogen dioxide, total suspended particles(TSP), and sulfur dioxide. Results: Daily death counts were associated with ozone(1 day before), nitrogen dioxide(1 day before), TSP(2 days before), sulfur dioxide(2 days before). The association with ozone was most statisfically significant and independent of other air pollutants. Increase of 100 ppb in ozone was associated with 0%(95% Cl= 2%-10%) increase in the daily number of death, This effect was greater in persons aged 65 and older. The relative risks of death from respiratory disease and cardiovascular disease were greater than for all-cause mortality in each pollutant. After ozone level exceeds 25 ppb, the dose-response relationship between mortality and ozone was almost linear. However, the effect of TSP, sulfur dioxide, and nitrogen dioxide on mortality might be confounded with each other. Conclusion: Daily variations in air pollution within the range currently occurring in Seoul might have an adverse effect on daily mortality.

  • PDF