• Title/Summary/Keyword: heat plate

Search Result 1,878, Processing Time 0.028 seconds

Quality Comparison of Rice Cooked on Heat Plate, Induction Heat, and Heat Plate with Pressure (취반기의 가열 방식별 취반미의 특성 비교 분석)

  • Kim, Sang Sook;Chung, Hae Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.3
    • /
    • pp.464-472
    • /
    • 2017
  • The qualities of rice cooked on heat plate, induction heat and heat plate with pressure, were investigated. The weight, volume, water soluble index (WSI), hydration by SEM (Scanning Electron Microscope), and gelatinization by DSC (Differential Scanning Calorimetry), as well as the consumer acceptability of cooked rice were analyzed. The weight, volume and WSI of rice cooked on heat plate with pressure were higher than those of rice cooked on heat plate and induction heat. The rice cooked on heat plate with pressure also showed higher degree of hydration and gelatinization, and lower degree of enthalpy of gelatinization than the rice cooked on heat plate and induction heat for 5~15 min. The consumer acceptability revealed that the odor, appearance, taste, texture and overall acceptance of rice cooked on induction heat were better than those of rice cooked on heat plate and heat plate with pressure. During storage in a cooker for 0~12 h, there was a decrease in the consumer acceptability of cooked rice. Overall results indicate that the qualities of rice cooked on induction heat and heat plate with pressure were higher than those of rice cooked on heat plate.

Experimental Study on Heat Transfer and Pressure Drop Characteristics for Single-Phase Flow in Plate and Shell Heat Exchangers. (Plate and Shell 열교환기의 단상유동 열전달 및 압력강하 특성에 관한 실험적 연구)

  • 서무교;김영수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.4
    • /
    • pp.422-429
    • /
    • 2000
  • Plate and shell heat exchanger(P&SHE) is widely applied as evaporators or condensers in the refrigeration and air conditioning systems for their high efficiency and compactness. In order to set up the database for the design of the P&SHE, heat transfer and pressure drop characteristics for single phase flow of water in a plate & shell heat exchanger are experimentally investigated in this study. Single phase heat transfer coefficients were measured for turbulent water flow in a plate and shell heat exchangers by Wilson plot method. The shell side heat transfer resistance was varied and the overall heat transfer coefficients were measured. The single-phase heat transfer coefficients in a plate side were obtained by Wilson plot method. Single-phase heat transfer correlations based on projected heat transfer area and friction factor correlations have been proposed for single phase flow in a plate and shell heat exchanger.

  • PDF

Thermal Performance Analysis of a Shell-and-Tube Heat Exchanger with Plate Fins of Various Shape (다양한 형상의 판형 휜을 장착한 원통다관형 열교환기의 열성능 해석)

  • 신지영;손영석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.648-656
    • /
    • 2004
  • In this study, a highly efficient shell-and-tube heat exchanger with plate fins is considered to improve thermal performance of the conventional shell-and-tube heat exchanger. This type of shell-and-tube heat exchanger with plate fins of various shape is simulated three-dimensionally using a commercial thermal-fluid analysis code. CFX4.4. The effect of the shape of the plate fin on heat transfer characteristics is also investigated by the simulation. Plate fins of four different shapes. plane, plane-slit. wave. and wave-slit fins, are considered. The flow fields, pressure drop and heat transfer characteristics in the heat exchanger are calculated. It is proved that the shell-and-tube heat exchanger with plate fins is superior to the conventional shell-and-tube heat exchanger without plate fins in terms of heat transfer. The shape of the plate fin is important in the performance of a heat exchanger such as heat transfer and pressure drop.

Effects of Flow Resonance on Heat Transfer Enhancement and Pressure Drop in a Plate Heat Exchanger (유동공진이 판형 열교환기의 열전달 향상과 압력강하에 미치는 영향)

  • Han Sang Kyu;Kang Byung Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.165-172
    • /
    • 2005
  • Heat transfer enhancement of three types of brazed plate heat exchangers has been evaluated experimentally. The effects of flow resonance in a plate heat exchanger on the heat transfer rate and pressure drop have been investigated in a wide range of mass flow rates in detail. The problem is of particular interest in the innovative design of a plate heat exchanger by flow resonance. The results obtained indicate that both heat transfer coefficient and pressure drop are increased as mass flow rate is increased, as expected. It is also found that the heat transfer enhancement is increased with an increase in the plate pitch, while the heat transfer is decreased with a decrease in the chevron angle. Pressure drop also increased with an increase in the plate pitch and with a decrease in the chevron angle. Heat transfer enhancement in the plate heat exchangers is maximized by flow resonance and the resonance frequency of the present plate heat exchangers is found to be in the range of $10~15\;Hz$.

An Experimental Study on the Performance of Plastic Plate Heat Exchanger (플라스틱 판형 열교환기의 성능에 관한 실험적 연구)

  • Yoo Seong Yeon;Chung Min Ho;Kim Ki Hyung;Lee Je Myo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.117-124
    • /
    • 2005
  • Aluminum plate heat exchanger, rotary wheel heat exchanger, and heat pipe heat exchanger have been used (or ventilation heat recovery in the air-conditioning system. The purpose of this research is to develop high efficiency plastic plate heat exchanger which can substitute aluminum plate heat exchanger. Because thermal conductivity of plastic is quite small compared to that of aluminum, various heat transfer enhancement techniques are applied in the design of plastic plates. Five types of heat exchanger model are designed and manufactured, which are plate type, plate-fin type, turbulent promoter type, corrugate type, and dimple type. Thermal performance and pressure loss of each heat exchangers are measured in various operating conditions, and compared each other. Test results show that heat transfer performance of corrugate type, turbulent promoter type, and dimple type are increases about $43\%$, $14\%$, and $33\%$ at the equivalent fan power compared to those of plate type, respectively. On the other hand, the heat transfer performance of plate-fin type decreases $9\%$ because fins can not play their own role.

Experimental Study on Heat Transfer Characteristics for Single-phase Flow in Plate & Shell Heat Exchangers by Using Wilson Plot Method (Wilson plot법을 이용한 Plate & Shell 열교환기의 단상유동 열전달 특성에 관한 실험적 연구)

  • Seo, M.K.;Kim, Y.S.;Lee, S.K.
    • Journal of Power System Engineering
    • /
    • v.3 no.4
    • /
    • pp.22-27
    • /
    • 1999
  • Single phase heat transfer coefficients were measured for turbulent water flow in a plate & shell heat exchangers by using Wilson plot method. An experiment for counterflow heat exchange between the plate and shell was performed. The shell side heat transfer resistance was varied and the overall heat transfer coefficients were measured. The single-phase heat transfer coefficients in a plate side were obtained by Wilson plot method. Single-phase heat transfer correlations based on projected heat transfer area have been proposed for a plate & shell heat exchanger.

  • PDF

Effects of Plate Pitch and Chevron Angle in a Plate Heat Exchanger on Thermal Energy Performance (판형 열교환기의 피치 및 세브론각이 열에너지 성능에 미치는 영향)

  • Kang, Byung Ha;Han, Sang Kyu
    • Journal of Hydrogen and New Energy
    • /
    • v.15 no.3
    • /
    • pp.194-200
    • /
    • 2004
  • Thermal energy performance of a brazed plate heat exchanger has been evaluated experimentally. The effects of plate pitch as well as chevron angle of a plate heat exchanger on the heat transfer rate and pressure drop have been investigated in the wide range as mass flow rates in detail. This problem is of particular interest in the design of a plate heat exchanger. The results obtained indicate that both heat transfer rate and pressure drop are increased as mass flow rate is increased, as expected. It is also found that the heat transfer rate is increased with a decrease in the plate pitch while the heat transfer is decreased with a decrease in the chevron angle. Friction factor correlations are suggested based on the measured pressure drop and effectiveness of plate heat exchangers are also compared.

A Method to Reduce Flow Depth of a Plate Heat Exchanger without a Loss of Heat Transfer Performance (판형 열교환기의 열전달성능 손실 없이 유동방향 길이를 축소하는 방법)

  • Song Gwi-Eun;Lee Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.2
    • /
    • pp.129-136
    • /
    • 2006
  • Optimal design of an air-to-liquid finned plate heat exchanger is considered theoretically in this study. Based on existing correlations for the pressure loss and the heat transfer in channel flows, the optimal configuration of the plate heat exchanger including the optimal plate pitch and the optimal fin pitch is obtained to maximize the heat transfer within the limit of the pressure drop for a given flow depth of the plate heat exchanger. It is found that the optimal fin pitch is about one ninth of the optimal plate pitch. In the optimal configuration, the flow and thermal condition in the channels is just at the boundary between the laminar developing and laminar fully developed states. It is also found when reducing the flow depth of plate heat exchangers for compactness, the heat transfer performance can be maintained exactly the same if the geometric parameters such as the plate thickness, plate pitch, fin thickness, and fin pitch are reduced proportional to the square root of the flow depth as long as the flow keeps laminar within the heat exchangers.

A Study on Heat Transfer and Pressure drop Characteristics in Plate Heat Exchange (판형 열교환기의 열전달 및 압력강하 특성에 관한 연구)

  • 서무교;박재홍;김영수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.581-587
    • /
    • 2001
  • Plate heat exchange(PHE) will be applied to the refrigeration and air conditioning systems as evaporators or condensers for their high efficiency and compactness. The purpose of this study is the analyze the characteristics of heat transfer and pressure drop of plate heat exchanger. Numerical work was conducted using the FLUENT code k-$\varepsilon$model. Also the dependence of heat transfer coefficient and friction factor on Reynolds number was investigated. As the Reynolds number increases, it is found that heat transfer coefficient also increases, but friction factor decreases. The study examines the internal flow, thermal distribution and the pressure distribution in the channel of plate heat exchanger. The results of CFD analysis compared with experimental data, and the difference of friction factor and Nusselt number in plate heat exchanger are 10% and 20%, respectively, Therefore the CFD analysis model is effective for the performance prediction of plate heat exchanger.

  • PDF

A Numerical Analysis Study on Plate Heat Exchanger Heat Transfer Characteristic by Corrugation Angle and Pitch (주름 각도와 피치에 따른 판형 열교환기 전열특성에 관한 수치해석 연구)

  • Kang, Dae-Ki;Kim, Si-Pom;Hwang, Il-Ju;Lee, Jae-Hoon;Do, Tae-Wan;Yeo, Woon-Yeop
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.154-159
    • /
    • 2012
  • For numerical analysis of the plate heat exchanger, a lot of time are required in modeling work and calculation. Whereas, this paper was purposed to identify characteristic of the plate heat exchanger through simplification of modeling by interpreting the numerical analysis proximity with the actual model. This study was also examined temperature difference between inlet side and outlet side, inner pressure drop, heat transfer area of plate and change of heat transfer coefficient on the plate depending on the inner corrugation angle and corrugation pitch of a herring bon pattern of the plate heat exchanger among chevron types of the plate exchanger.