• Title/Summary/Keyword: heat of hydration measurement

Search Result 34, Processing Time 0.035 seconds

Precision Measurement of the Hydration of Mortar by Ultrasonic and Dielectric Method (초음파 및 유전성을 이용한 모르타르(Mortar) 수화(Hydration) 과정의 정밀측정)

  • Han, E.K.;Lee, M.H.;Kim, S.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.9 no.1
    • /
    • pp.56-68
    • /
    • 1989
  • Recently, there are many fields have been required for the precision measurements, as an advanced example of which, a precise change of inner structure during the hydration process of mortar was observed by ultrasonic and dielectric measurements. The results show that it is possible to determine the safety of mortar and mixing ratio, and strength growth and shrinkage rate by heat evolution.

  • PDF

A Study on the Effect of Pipe Cooling in Mass-Concrete (매스콘크리트의 파이프 쿨링 효과)

  • 윤승권;김은경;김래현;신치범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.329-333
    • /
    • 1995
  • The usual methods for the temperature control of mass-concrete structures include the use of low-heat cement, pre-cooling, or pipe-cooling. In order to control the heat of hydration of mass-concrete structures such as massive pier or anchor block, and mat foundation, the pipe cooling method is widely acceptable for pratical use. In this paper, method of analysis using the Finite Element Method was applied to analyze the heat exchange on the field of three dimensional thermal conduction. The result of analysis Well agreed with experimentally measurement data by "KUMATANI". The method of this analysis will be used widely to control the heat of hydration by the pipe cooling in mass-concrete.-concrete.

  • PDF

Influences of Sodium Gluconate on the Physical Properties of Portland Cement Pastes and Mortars (포틀랜드 시멘트 페이스트 및 몰탈의 물성에 미치는 글루콘산 나트륨의 영향)

  • 김창은;이승헌;김원기;이경원
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.3
    • /
    • pp.289-295
    • /
    • 1987
  • The changes of physical properties of portland cement pastes and mortars were investigated by addition of sodium gluconate. Flow table experiment and viscosity measurement were took in order to find dispersing effect, and time-dependent changesof viscosity and rates of hydration heat evolution were carried out for the sake of finding retardation effect of hydration. And changes of physical properties of cement pastes and mortars were discussed by setting time, compressive strength and porosity.

  • PDF

Properties of the Active Belite Cement with Slag (슬래그를 혼합한 고온형 벨라이트 시멘트의 특성)

  • 안태호;박동철;심광보;최상홀
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.6
    • /
    • pp.599-603
    • /
    • 1999
  • In an effort to improve the mechanical properties of the belite cement active belite cement clinker was synthesized. Properties of the clinker were characterized by a XRD, FT-IE optical microscopy and SEM. The additive effects of slag on the hydration properties were investigated by the measurement of compressive strength heat evolution and SEM. The experimental results exhibited that the 3wt% borax was effective in stabilizing $\alpha$'-C2S and the addition of 5wt% anhydrite and 40wt% slag wee effective in the hydration.

  • PDF

A Temperature Management of Mass Concrete for Crack Control in Machine Foundation (기계기초 매스콘크리트의 균열제어를 위한 온도관리)

  • 허택녕;이제방;손영현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.394-401
    • /
    • 1996
  • This paper persents the crack control of mass concrete in massive machine foundation. The dimension of the machine foundation is 52.6m$\times$14.4m$\times$8.5m. The one distinctive characteristic of mass concrete is thermal behavior. Since the cement-water reaction is exothermic by nature, the temperature rises inside the massive concrete structure. When the heat is not quickly dissipated, it can be quite high. Significant tensile stresses may develop from the volume change associated with the increase of decrease of temperature within the mass concrete structure. To avoid occurrence of harmful cracks due to hydration heat, special attention shall be given to the construction of mass cnocrete structures. The temperature control system of mass concrete is proposed in this paper. This system contains a discussion of materials and concrete mix proportioning, thermal analysis, curing method, temperature control, and measurement of hydration heat. As will be seen throughout the paper, the proposed temperature control system have a great effect on the temperature-related cracks on mass concrete structures.

  • PDF

Hydration of Supersulphated Slag Cement with $C_4A_3\bar{S}$ type Clinker and Calcined Dolomite as Activator ($C_4A_3\bar{S}$계 클린커 및 하소돌로마이트를 자극제로 한 고환산염 슬라그 시멘트의 수화반응)

  • 박춘근;최상홀
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.2
    • /
    • pp.33-38
    • /
    • 1985
  • The hydration of supersulphated slag cement which is the mixture of granuloated blast furnace slag anhydrite $C_4A_3$ type clinker and calcined dolomite was studied by X-ray diffraction differential thermal analysis scanning electron microscope observation and measurement of the rate of heat liberation. The main hydrates were ettrigite and C-S-H. This supersulphated slag cement enhanced rapid-hardening and increased in strength at early stage due to the much of ettrigite. Furthermore the hardened cement became stronger due to the C-S-H that was produced from the hydration of the $eta$-$C_2S$ in $C_4A_3$ type clinker and the hydration of the dissolved components from slag at later period.

  • PDF

Mechanical Properties of Cement Paste according to the amount of Red mud Neutralized with Sulfuric Acid (황산 중화 레드머드 첨가량에 따른 시멘트 페이스트의 역학적 특성)

  • In, Byung-Eun;Kim, Sang-Jin;Kang, Suk-Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.21-22
    • /
    • 2022
  • In order to improve the strength degradation of the cement-based material to which strong alkaline liquid red mud was added, the liquid red mud was neutralized with sulfuric acid and added to the cement paste to examine the mechanical properties according to the amount added. As a result of measuring the compressive strength, the strength was higher when the red mud was neutralized with sulfuric acid and added to the cement paste than the cement paste to which the liquid red mud was added. As a result of hydration heat measurement, when red mud was neutralized with sulfuric acid and added to the cement paste, an initial strength higher than that of liquid red mud was expressed.

  • PDF

Impact of MJS treatment and artificial freezing on ground temperature variation: A case study

  • Jiling, Zhao;Ping, Yang;Lin, Li;Junqing, Feng;Zipeng, Zhou
    • Geomechanics and Engineering
    • /
    • v.32 no.3
    • /
    • pp.293-305
    • /
    • 2023
  • To ensure the safety of underground infrastructures, ground can sometimes be first treated by cement slurry and then stabilized using artificial ground freezing (AGF) technique before excavation. The hydration heat produced by cement slurry increases the soil temperature before freezing and results in an extension of the active freezing time (AFT), especially when the Metro Jet System (MJS) treatment is adopted due to a high cement-soil ratio. In this paper, by taking advantage of an on-going project, a case study was performed to evaluate the influence of MJS and AGF on the ground temperature variation through on-site measurement and numerical simulation. Both on-site measurement and simulation results reveal that MJS resulted in a significant increase in the soil temperature after treatment. The ground temperature gradually decreases and then stabilized after completion of MJS. The initiation of AGF resulted in a quick decrease in ground temperature. The ground temperature then slowly decreased and stabilized at later freezing. A slight difference in ground temperature exists between the on-site measurements and simulation results due to limitations of numerical simulation. For the AGF system, numerical simulation is still strongly recommended because it is proven to be cost-effective for predicting the ground temperature variation with reasonable accuracy.

Physical Properties of Cement Blended Finex-Slag Powder (파이넥스 슬래그 미분말을 혼합한 시멘트의 물성)

  • Lee, Keun-Jae;Byun, Seung-Ho;Choi, Hyun-Kook;Song, Jong-Taek
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.375-380
    • /
    • 2010
  • In this study, physical properties of cement blended with Finex-slag powder(OPC-FS) were investigated by the measurement of flowability, compressive strength, hydration heat, and $Ca(OH)_2$ content. In addition, those properties of the cement blended with blast furnace slag(OPC-BFS) were also measured for comparison. It was found that OPC-FS and OPC-BFS showed similar trend in the rheological properties. In the blended cement pastes with the $4,000\;cm^2/g$ Blaine value the flowability of OPCFS was better than that of OPC-BFS. The initial 3 day mortar compressive strength and the hydration heat of paste of OPC-FS was a bit higher, compared with OPC-BFS. Accordingly $Ca(OH)_2$ produced in the cement hydration was decreased very rapidly.

Lateral Behavior of Abutment Piles in Full Integral Bridge During 7 Days in Response to Hydration Heat and Drying Shrinkage (수화열과 건조수축에 의한 7일간의 완전 일체식 교량 교대 말뚝기초의 횡방향 거동)

  • ;;;;Thomas A. Bolte
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.127-149
    • /
    • 2003
  • The bridge tested was 3 spans 90m-long PSC beam concrete bridge with a stub-type abutment which had a skew of 60$^{\circ}$ about the axis of bridge. A cement concrete was placed at the superstructural slab of the bridge. Inclinometers and straingauges were installed at piles as well. During 7 days-curing of superstructural slab, the pile behavior in response to hydration heat and drying shrinkage of the slab was monitored. Then monitored values were compared with the horizontal movement obtained from the HACOM program and the calculated lateral behavior obtained from the nonlinear p-y curves of pile. As a result, lateral behavior of H-piles by the field measurement occurred due to the influence of hydration heat and drying shrinkage obtained during curing of superstructural concrete. The lateral displacements by hydration heat and drying shrinkage were 2.2mmand 1.4mm respectively. It was observed as well that the inflection point of lateral displacement of pile was shown at 1.3m down from footing base. It means that the horizontal movement of stub abutment did not behave as the fixed head condition of a pile but behave as a similar condition. The measured bending stress did not show the same behavior as the fixed head condition of pile but showed a similar condition. The increment of maximum bending stress obtained from the nonlinear p-y curves of pile was about 300(kgf/$\textrm{km}^2$) and was 2 times larger than measured values regardless of installation places of straingauges. Meanwhile, lateral load, maximum lateral displacement, maximum bending stress and maximum bending moment of pile showed a linear behavior as curing of superstructural concrete slab.