• Title/Summary/Keyword: heat of hydration analysis

Search Result 207, Processing Time 0.022 seconds

A Study on the Effect of Pipe Cooling in Mass-Concrete (매스콘크리트의 파이프 쿨링 효과)

  • 윤승권;김은경;김래현;신치범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.329-333
    • /
    • 1995
  • The usual methods for the temperature control of mass-concrete structures include the use of low-heat cement, pre-cooling, or pipe-cooling. In order to control the heat of hydration of mass-concrete structures such as massive pier or anchor block, and mat foundation, the pipe cooling method is widely acceptable for pratical use. In this paper, method of analysis using the Finite Element Method was applied to analyze the heat exchange on the field of three dimensional thermal conduction. The result of analysis Well agreed with experimentally measurement data by "KUMATANI". The method of this analysis will be used widely to control the heat of hydration by the pipe cooling in mass-concrete.-concrete.

  • PDF

A study of the Bent of Hydration Analysis Underground Pier Footing by Constrution Stages (시공단계를 고려한 교각기초의 수화열해석)

  • Park Weon-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.3
    • /
    • pp.223-230
    • /
    • 2005
  • Lately, massive concrete structures are increasingly built. Mass concrete structures are cast in many stages with construction joints. Individually constructed segment exhibit different heat source properpies and time dependent properties. As such construction stages must be incorporated in a heat of hydration analysis model to truly reflect a real construction process. Thermal stress analysis is conducted to find the way of controlling the thermal crack of pier footing mat in this paper. The footing mat model fur the analysis is $12m\times14m$ area and 3m height. This study show the process of construction stage and analyzes the results for a foundation structure constructed in 2 stage pours.

  • PDF

Analysis and Measurements of Hydration Heat of Pile Cap of Approach Bridge in Incheon Bridge (인천대교 접속교 파일캡구조물의 수화열 해석 및 계측)

  • Park, Kyoung-Lae;Yun, Man-Guen;Shin, Hyun-Yang;Kim, Young-Seon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.693-696
    • /
    • 2006
  • In massive hardening concrete structures, early age thermal cracking due to the heat of hydration may occur. There are many massive structures in Incheon bridge project and they have to be carefully treated to prevent thermal cracking. In this paper, an example of analyzed and measured results of hydration heat of pile caps in the Incheon bridge project was represented. Finite element simulations were carried out before casting and curing method was determined using the analyzed result. Sensors were installed before casting and temperature and strain of concrete was measured during curing. Gathered data were compared with the analyzed data and selected control method to prevent cracking was verified. Analyzed result gave good agreement and very few cracking could be found.

  • PDF

Analysis and Measurements of Hydration Heat of Pile Cap in Incheon Bridge (인천대교 파일캡 구조물의 수화열 해석 및 계측)

  • Park, Kyoung-Lae;Yun, Man-Guen;Shin, Hyun-Yang;Kim, Young-Seon;Lee, Kwang-Myung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.421-424
    • /
    • 2006
  • In massive hardening concrete structures, early age thermal cracking due to the heat of hydration may occur. There are many massive structures in Incheon bridge project and they have to be carefully treated to prevent thermal cracking. In this paper, an example of analyzed and measured results of hydration heat of pile caps in the Incheon bridge project was represented. Finite element simulations were carried out before casting and curing method was determined using the analyzed result. Sensors were installed before casting and temperature and strain of concrete was measured during curing. Gathered data were compared with the analyzed data and selected control method to prevent cracking was verified. Analyzed result gave good agreement and very few cracking could be found.

  • PDF

A Study on Creep, Drying Shrinkage, Hydration Heat Produced in Concrete Floor Plate of Steel Box Girdler Bridge (강박스 거더교 콘크리트 바닥판에 발생하는 크리프, 건조수축, 수화열에 관한 연구)

  • 강성후;박선준;김민성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.457-462
    • /
    • 2003
  • It studies the non-structural crack factors that are produced in Steel Box Girder Bridge concrete floor plate using analytical method. It mainly studies humidity and design standard of concrete strength. It used MIDAS CIVIL Ver 5.4.0, a general structure analysis program that applies drying shrinkage rate of domestic road bridge design standard and standard value of creep coefficient, CEF-FIP standard equation and ACI standard equation from the aspect of creep, drying shrinkage and hydration heat to see the effect of the two factors on concrete crack and found the following result. The analytical results of this study showed that the initial stress, which was obtained by ACI standard, exceeds the allowable tensile stress between 5 to 18 days. This result means that even if a bridge is designed and constructed according to design standard, the bridge can have cracks due to various variables such as drying shrinkage, hydration heat and creep that produce stress in slab.

  • PDF

Thermo-mechanical behavior of prestressed concrete box girder at hydration age

  • Zhang, Gang;Zhu, Meichun;He, Shuanhai;Hou, Wei
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.529-537
    • /
    • 2017
  • Excessively elevated temperature can lead to cracks in prestressed concrete (PC) continuous bridge with box girder on the pier top at cement hydration age. This paper presents a case study for evaluating the behavior of PC box girder during the early hydration age using a two-stage computational model, in the form of computer program ANSYS, namely, 3-D temperature evaluation and determination of mechanical response in PC box girders. A numerical model considering time-dependent wind speed and ambient temperature in ANSYS for tracing the thermal and mechanical response of box girder is developed. The predicted results were compared to show good agreement with the measured data from the PC box girder of the Zhaoshi Bridge in China. Then, based on the validated numerical model three parameters were incorporated to analyze the evolution of the temperature and stress within box girder caused by cement hydration heat. The results of case study indicate that the wind speed can change the degradation history of temperature and stress and reduce peak value of them. The initial casting temperature of concrete is the most significant parameter which controls cracking of PC box girder on pier top at cement hydration age. Increasing the curing temperature is detrimental to prevent cracking.

A Study on Heat Storage System Using Calcined Dolomite - Numerical Analysis of Heat Transfer in Calcined Dolomite Hydration Pocked Bed - (소성Dolomite 수화물계의 축열시스템에 관한 연구 - 소성Dolomite 수화반응층의 전열해석 -)

  • Park, Young-Hae;Kim, Jong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.1
    • /
    • pp.9-21
    • /
    • 2002
  • To develope chemical heat pump using available energy sources, solar heat and other kinds of waste thermal energy, we have studied the heat transfer rate in cylindrical bed reactor packed with calcined Dolomite. Two dimensional (radial and circumferential) Partial differential equations, concerning heat and mass transfer in packed bed of calcined Dolomite, are solved numerically to describe the characteristics of the reaction of calcined Dolomite and heat transfer. The results obtained by numerical analysis about two dimensional profiles of temperature and conversion of reactant in the packed bed reactor and the amount of exothermic heat released from the reactor are follows. It was found that all of calcined Dolomite packed bed kept the reaction temperature of about 750K throughout the entire part of the bed, immediately after the steam was introduced exothermic reaction of hydration was proceeded from the packed bed inpu to output and from wall side to center. The rate of thermochemical reaction depends on the temperature and concentration and it is also governed by the boundary conditions and heat transfer rate in the particle packed bed.

Evaluation of Hydration Heat of Mass Concrete with Capsulated Slurry PCM and FEM Study for Analyzing Thermal Crack (캡슐형 슬러리 PCM을 혼입한 매스콘크리트의 수화열 평가 및 온도균열 FEM 해석에 관한 연구)

  • Park, ChangGun;Kim, Bo-Hyun;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.5
    • /
    • pp.379-388
    • /
    • 2014
  • The purpose of this study is to investigate the effect of capsulated slurry phase change material (PCM) on the thermal crack in mass concrete by experimental work and FEM analysis. In this study, three conditions of samples were prepared for evaluating the level of hydration heat, i.e., a material condition, a cement paste condition and a concrete condition. Also, a compressive strength test was conducted for FEM inverse analysis. Based on the results of the experiment, exothermic function coefficients of concrete with encapsulated slurry PCM were deducted by the inverse analysis. After that, they applied to FEM analysis of the mass scale concrete structures. From the results of this experiment, $31^{\circ}C$ capsulated slurry PCM had no super cooling phenomenon in the material condition. In the cement condition, hydration heat decreased by 34.61J when PCM of 1g was mixed. In the concrete condition, PCM of 6% was deducted as the best level in hydration heat absorption. In FEM inverse analysis, rate coefficient of reaction gradually decreased when PCM mixing ratio increased. But, temperature-rise coefficient increased when PCM mixing ratio exceeded 6%. For the inversed exothermic function coefficients applying to large scale concrete structures, a thermal cracking index increased by 0.05 when PCM of 1% was mixed.

Theoretical Study of Hydration of Zeolite NaA (제올라이트 NaA의 수화에 관한 이론적 연구)

  • Kyoung Tai No;Mu Shik Jhon
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.374-384
    • /
    • 1979
  • Hydration scheme and hydration energy are determined in ${\alpha}$ cage of zeolite NaA. The selectivity between Na(1) and Na(2) is determined from energy calculation. The waters in ${\alpha}$ cage form a distorted dodecahedral cage. The average binding energies of water(1), water(2) and water(3) are -29.847, -25.344 and -15.888 kcal/mole respectively. The positions of oxygens of hydrated waters are in good agreement with the X-ray data. The heat of immersion curve is also obtained. This result is in good agreement with the differential heat of sorption curve obtained from differential thermal analysis. It is concluded that theoretical method provides considerable uses in the determination and understanding of the hydration and interaction energy of zeolites sorbate binding.

  • PDF

Analysis of the Effect of Solar Radiation on Internal Temperature Distribution in Concrete Mat Foundation (태양 복사열이 콘크리트 매트기초의 내부 온도분포에 미치는 영향에 관한 해석적 연구)

  • Song, Chung Hyun;Lee, Chang Joo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.1
    • /
    • pp.63-72
    • /
    • 2017
  • This research investigated the effect of solar radiation on the temperature distribution in concrete mat foundation. Zhang and Huang Model was utilized to estimate solar radiation heat at a given date and time. A one-dimensional finite element formula was derived with the fundamental laws of heat transfer and Galerkin method. Based on the formula, a one dimensional finite element analysis code was developed using MATLAB. Hydration heat analysis of mat foundation were conducted using the developed code. It was found that the solar radiation reduced the maximum temperature difference in mat foundation, and this temperature difference reduction was more prominent in case of summer season cast, a higher initial concrete temperature, and a thicker mat foundation depth. The research recommended that the solar radiation should be considered in hydration heat analysis of concrete mat foundation so as not to overestimate the maximum temperature difference in mat foundation.