• Title/Summary/Keyword: heat fixation

Search Result 35, Processing Time 0.026 seconds

Production of Fructose Corn Syrup by Glucose Isomerase (Glucose isomerase 효소를 이용한 이성화당(과당) 생산에 관한 연구)

  • 백성원;유두영
    • Korean Journal of Microbiology
    • /
    • v.18 no.2
    • /
    • pp.59-66
    • /
    • 1980
  • Two strains S-P and S-P-2, both Streptomyces sp., have been isolated and were found to have relatively high specific enzyme activity compared to other organisms reported. The specific activity of the enzyme produced from these two strains were 0.25 and 0.2 international units respectively. The productivity of the enzyme achieved was about 50 IU/l/hr. Glucose isomerase form these strains was found to be stable under the temperature of heat treatment (at $65^{\circ}C$) for fixation of enzyme inside the dell. This organism has an advantage in that it did not require toxic metalic ion for enzyme activity and could utilize xylan in leu of xylose as an inducer. The optimal temperature and pH of enzymatic reaction purpose of using these data for the optimal operation and designing of enzyme reactor system. The reaction mechanism was found to follow the single substrate reversible reaction kinetics. The kinetic constants determined experimentally are : $K_{mf}=0.33M,\;K_{mb}=1.0M,\;V_{mf}=0.88{\mu}mole\;per\;min.,\;V_{mb}= 2.96{\mu}mole\;per\;min.\;and\;K_{eq}=0.74.

  • PDF

Characterion of Calcium Phosphate Films Grown on Surgicl Ti-6AI-4V By Ion Beam Assisted Deposition

  • Lee, I-S.;Song, J-S.;Choi, J-M;Kim, H-E.
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.30-36
    • /
    • 1998
  • The plasma-spray technique is currently the most frequently used method to produce calcium phosphate coatings. Hydroxyapatite(HAp), one form of calcium phosphate, is preferred by its ability to form a direct bond with living bone, resulting in improvements of implant fixation and faster bone healing. Recently, concerns have been raised regarding the viable use and long-term stability of plasma-spray HAp coatings due to its nature of comparatively thick, porous, and poor bonding strength to metal implants. Thin layers (maximum of few microns) of calcium phosphate were formed by an e-beam evaporation with and without ion bombardments. The Ca/P ration of film was controlled by either using the evaporants having the different ration of Ca/P with addition of CaO, or adjusting the ion beam assist current. The Ca/P ration had great effects on the structure formation after heat treatment and the dissolution bahavior. The calcium phosphate films produced by IBAD exhibited high adhesion strength.

  • PDF

Nitrogen Fixation Screening and Plant Growth Assessment for Urban Greening (도시 녹화를 위한 질소고정 균 선별 및 식물 생장 평가)

  • Jeong, Sun Hwan;Lee, Sang Seob
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.2
    • /
    • pp.154-161
    • /
    • 2018
  • Currently, urban greening projects and research are attracting attention as a way to mitigate urban heat island phenomenon. In this study, nitrogen fixative bacteria were isolated and their effects on plant growth were confirmed. First, enrichment was performed in a nitrogen-free medium to isolate the nitrogen-fixing bacteria, and the colony showing high growth in a medium with limited nitrogen source was isolated and purified. Separated bacterial isolates were reduced by more than 90% acetylene by ARA and indirectly confirmed the activity of nitrogenase by ethylene production. Cedecea sp. MK7 and Enterobacter sp. Y8 with confirmed reproducibility were selected as nitrogen fixative bacteria. Nitrogen fixing bacteria were applied to the growth of perennial rye grass, and it was found that the dry weight increased to 34.80 mg (186.60%) compared with the control with 18.65 mg dry weight. After plant growth, microbial community analysis of soil applied by bacteria showed similarity to the control group. Therefore, in this study, it is expected that the efficiency will be increased if plant growth is promoted by using nitrogen fixing bacteria in urban greenery system.

Mechanical Properties Characteristics according to Heat Treatment Conditions of Medical Bone Plates by 3D Printing (3D프린팅 제조기반 골절합용 금속판의 열처리 조건에 따른 기계적 성능 특성)

  • Jung, Hyunwoo;Park, Sung Jun;Woo, Heon
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.116-123
    • /
    • 2022
  • This study analyzes the Mechanical properties of a medical bone plate by 3D printing. With the recent development of 3D printing technology, it is being applied in various fields. In particular, in the medical field, the use of 3D printing technology, which was limited to the existing orthosis and surgical simulation, has recently been used to replacement bones lost due to orthopedic implants using metal 3D printing. The field of application is increasing, such as replacement. However, due to the manufacturing characteristics of 3D printing, micro pores are generated inside the metal printing output, and it is necessary to reduce the pores and the loss of mechanical properties through post-processing such as heat treatment. Accordingly, the purpose of this study is to analyze the change in mechanical performance characteristics of medical metal plates manufactured by metal 3D printing under various conditions and to find efficient metal printing results. The specimen to be used in the experiment is a metal plate for trauma fixation applied to the human phalanx, and it was manufactured using the 'DMP Flex 100(3D Systems, USA), a metal 3D printer of DMLS (Direct Metal Laser Sintering) method. It was manufactured using the PBF(Powder Bed Fusion) method using Ti6Al4V ELI powder material.

Develop ECO-FREE high concentration Full black dye using transfer printing and application technology (전사날염용 ECO-FREE 고농도 Full Black 염료개발과 응용기술)

  • Cho, Ho-Hyun;Chung, Myung-Hee;Lee, A-Ram
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.19 no.2
    • /
    • pp.39-48
    • /
    • 2017
  • Transfer printing is a method to combine printing and dyeing technology by the use of sublimation. It is an environmentally-friendly printing method that saves costs, reduces the production processes by the omission of the washing process, and saves time by maintaining quality. Due to the development of transfer printing, a high value added printing technology is available now but color fastness to sublimation of the printing products is still low since there are few dyes that have an affinity to the fabrics and the application technology is still inadequate. Specially, in case of high concentration black dyes, eco-label type black dyes, which is a substitution for general dispersal dyes, have been developed while general dispersal black dyes are still used, creating issues such as color differences on the surface and back side of the fabrics and contamination by friction after transfer printing. There are also some restricted substances such as allergens. To address these issues, high concentration black dyes and application technology that are environmentally-friendly and that have over 16 K/S through the use of single dyes with excellent color fastness, fixation ability, and similar melting temperature were developed for this study.

  • PDF

Application Strategies of Eye-tracking Method in Nightscape Evaluation (야간경관 평가에서의 아이트래킹 분석 적용 연구)

  • Kang, Youngeun;Kim, Mintai
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.4
    • /
    • pp.87-97
    • /
    • 2015
  • There's a trend towards vitalization of nightscape planning businesses nationally and locally as well for city image making and activation of regional economy, but there is still no systematic nightscape planning going on for lack of relevant researches and objective evaluations. This study aims to suggest the guideline for nightscape planning by conducting an eye tracking experiment and survey for recognizing the characteristics of a nightscape. Furthermore, the authors intended to verify the eye-tracking method as a tool for landscape evaluation. The research site was restricted in the campus of Virginia Tech, VA, and those were selected by experts' survey among various types of nightscape images. The variables for analyzing the characteristics of nightscape images selected were 'preference', 'safety(fear)' and 'clearness'. 'Fixation duration', 'saccade duration', 'scan path length', and 'pupil size' were selected as the eye movement measurements. The results of this study are as follows: The first outcome found was that there were significant differences among the characteristics(preference, safety and clearness) of a nightscape by MANOVA, and these variables were correlated positively by Pearson's correlation. Secondly, there were differences on fixation duration, saccade duration and scan path depending on the nightscape setting statistically. Also, the eye tracking measurement in an open setting was recorded lower than enclosed settings. In the result of a heat map, we found the meaning of the fixated areas on both viewing without intention and viewing intentionally. It turned out that the fixated areas were consistent with the areas the subjects felt preferred and clarity in all of the nightscape images, which means people usually focus on what they prefer and see clearly in a certain nightscape. Based on this result and previous studies, the authors could make a conclusion that eye tracking method can apply to evaluate nightscape settings in terms of analyzing the whole characteristics and finding specific points for the detailed analysis as well. Therefore, these results can contribute by suggesting nightscape planning, implication of the landscape evaluation, and implication of the eye tracking study.

Properties and Activities of Nireogenase System of Azospirillum amazonensa Kp1 (Azospirillum amazonense Kp1의 질소고정효소계의 활성 및 특성)

  • 송승달;김성준;추연식
    • Korean Journal of Microbiology
    • /
    • v.28 no.2
    • /
    • pp.151-157
    • /
    • 1990
  • The maximum nitrogen fixation activity of the associative, microaerobic and acid tolerant bacteria, Azospirillum amazonense Kp1 was obtained with 0.2Kpa of $O_{2}$ and showed a reversible inhibition by the higher concentrations. Ammonium treatment caused a gradual inhibition of the activity up to 350mM. The nitrogenase systems were purified by gradient chromatography on DEAE-52 cellulose, heat treatment and preparative PAGE. The MoFe protein showed molecular weight of 210,000 including two nonidentical subunits with apparent molecular weights of 55,000 and 50,000 and an isoelectricpoint of 5.2 and contained 2, 24 and 28 atoms of Mo, Fe and acid labile S per molecule. The Fe protein revealed molecular weight of 66,000 including two types of subunits with molecular weights of 35,000 and 31,000 and an isoelectric point of 4.6, and contained 4 atoms of Fe and 6 atoms of S per molecule. The maximum specific nitrogenase activity attained 2,200 and 1,700nM $C_2H_4mg^{-1} min^{-1}$, respectively for MoFe and Fe proteins at pH7 and $35^{\circ}C$. The activity was lost after 10 and 30 days under the cold room ($4^{\circ}C$) condition for Fe and MoFe proteins, respectively.

  • PDF

Comparative proteome analysis of rice leaves in response to high temperature

  • Kim, Sang-Woo;Roy, Swapan Kumar;Kwon, Soo Jeong;Cho, Seong-Woo;Cho, Yong-Gu;Lee, Chul-Won;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.121-121
    • /
    • 2017
  • The productivity of rice has been influenced by various abiotic factors including temperature which cause to limitations to rice yield and quality. Rice yield and quality are adversely affected by high temperature globally. In the present study, four Korean four cultivars such as Dongan, Ilpum, Samkwang, Chucheong were investigated in order to explore molecular mechanisms of high temperature at seedling stage. Rice seedlings grown at $28/20^{\circ}C$ (day/night) were subjected to 7-day exposure to $38/28^{\circ}C$ for high-temperature stress, followed by 2-D based proteomic analysis on biological triplicates of each treatment. The growth characteristics demonstrated that Dongan is tolerant while Ilpum is sensitive to high-temperature stress. High temperature has an adverse effect in the seedling stage both in high temperature sensitive and tolerant cultivar. Two-dimensional gels stained with silver staining, a total of 722 differential expressed protein spots (${\geq}1.5-fold$) were identified using Progenesis SameSpot software. However, a total of 38 differentially expressed protein spots were analyzed by LTQ-FT-ICR MS. Of these, 9 proteins were significantly increased while 10 decreased under high-temperature treatment. Significant changes were associated with the proteins involved in the carbohydrate metabolism, photosynthesis, and stress responses. Proteome results revealed that high-temperature stress had an inhibitory effect on carbon fixation, ATP production, and photosynthetic machinery pathway. The expression level of mRNA is significantly correlated with the results obtained in the proteome investigation. Taken together, these findings provide a better understanding of the high-temperature resistance by proteomic approaches, providing valuable insight into improving the high-temperature stress tolerance in the global warming epoch.

  • PDF

Hydrothermal Synthesis of $TiO_2$ Nanowire Array for Osteoblast Adhesion

  • Yun, Young-Sik;Kang, Eun-Hye;Hong, Min-Eui;Yun, In-Sik;Kim, Yong-Oock;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.275-275
    • /
    • 2013
  • Osteoblast is one of cells related with osseointegration and many research have conducted the adhesion of osteoblast onto the surface of implant. In the osseointegration, biocompatibility of the implant and cell adhesion to the surface are important factors. The researches related to cell adhesion have a direction from micro-scaled surface roughness to nano-scaled surface roughness with advancing nanotechnology. A cell reacts and sense to stimuli from extracellular matrix (ECM) and topography of the ECM [1]. Thus, for better osseointegration, we should provide an environment similar to ECM. In this study, we synthesize TiO2 nanowires using hydrothermal reaction because TiO2 provides inertness to titanium on its surface and enables it used as an implant material for the orthopedic treatment such as fixation of the bone fracture [2]. Ti substrate is immersed into NaOH aqueous solution. The solution are heated at $140{\sim}200^{\circ}C$ for various time (10~720 minutes). After heat treatment, we take out the sample and immerse it into HCl aqueous solution for 1 hour. The acid treated sample is heated again at $500^{\circ}C$ for 3 hours [3]. Then, we culture osteoblast on the TiO2 nanowires. For investigating cell adhesion onto nanostructured surface, we conduct several tests such as MTT assay, ALP (Alkaline phosphatase) activity assay, measuring calcium expression, and so on. These preliminary results of the cell culture on the nanowires are foundation for investigating cell-material interaction especially with nanostructure interaction.

  • PDF

Development of IR Reflective Cool Pigment and Paint (차열도료용 Cool Pigment 및 Paint 개발)

  • Kwon, Myon-Joo;Do, Young-Woong;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3800-3805
    • /
    • 2012
  • Infrared(IR) reflective black cool pigment and paint which is used for interior/exterior materials(IR reflectance >30%) to prevent heat island effect and to increase energy efficiency were studied. Cool pigment was synthesized using mixture of $Fe_2O_3$ and $Cr_2O_3$ with calcination from 900 to $1,200^{\circ}C$. Cool paint was prepared by formulation of cool pigment, acrylic resins, and other additives. Results showed that optimum color fixation of pigment obtained by mole ratio of Fe to Cr was 0.9 with calcination temperature at $1,000^{\circ}C$. The cool paint formulated by 20% pigment and 1.5% dispersive additive with $125{\mu}m$ thickness of coated layer showed optimum IR reflectance. Temperature difference on surface between cool paint and ordinary paint(STD) was $36.5^{\circ}C$ and IR reflectance(TSR) was 39.3% at wavelength from 700 to 2,500nm. And color change was not detected during 500hrs weathering test.