• Title/Summary/Keyword: heat exchangers

Search Result 850, Processing Time 0.026 seconds

Analysis on condensation heat transfer and pressure drop to develop design program for plate heat exchangers (판형열교환기 설계프로그램 개발을 위한 응축열전달 및 압력강하 분석)

  • Ko, Jea-Hyun;Song, Young-Ho;Park, Kweon-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.376-382
    • /
    • 2014
  • The purpose of this study is to get the formulas of condensation heat transfer coefficient and pressure drop about the water to develop design program for plate type heat exchangers. The single phase flow of cold side was calculated with the correlation of Ko. Condensation heat transfer coefficient model proposed by Annaiev was used and Lockhart model was used to analyze the pressure drop. The calculation algorithm was proposed to calculate heat transfer rate and pressure drop simultaneously. The prediction errors remained within 20% compared to the commercial code in the working range of the plate heat exchangers.

Prediction of Characteristics for the Air-side Particulate Fouling in Finned-Tube Heat Exchangers of Air Conditioners used in the Field (실공간 사용 공기조화기용 열교환기의 공기측 파울링 특성 예측)

  • Ahn, Young-Chull;Jung, Sung-Hak;Hwang, Yu-Jin;Lee, Chang-Gun;Kim, Doo-Hyun;Jung, Seong-Ir;Lee, Jae-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.8
    • /
    • pp.563-568
    • /
    • 2007
  • The air-side particulate fouling in the heat exchangers of HVAC applications degrades the performances of cooling capacity, pressure drop across a heat exchanger, and indoor air quality. Indoor and outdoor air contaminants foul heat exchangers. An empirical modeling equation has been derived from the experimental results using accelerated tests and it showed good predictions of the fouling characteristics of the slitted finned tube heat exchangers. However the modeling equation predicts only the fouling characteristics of new heat exchangers and it can not predicts fouling characteristics obtained from actual field data which contains the effect of hydrophilicity deterioration. Therefore an modified modeling equation is proposed and it shows good predictions of the actual fouling characteristics of finned-tube heat exchangers.

Riser Design Approach for Particle-Circulation-Type Heat Exchangers (입자 순환식 열교환기의 상승관 설계방법)

  • Jun Yong-Du
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.311-312
    • /
    • 2002
  • In this paper a systematic design approach to determine the optimum size (height) of circulating fluidized bed heat exchanger for exhaust gas heat recovery is prososed. Unlike the convensional heat exchangers where the length of the heat exchanger section is not very much emphasized, the vertical length of heat exchanger tube in the case of fluidized bed heat exchangers is important because this length determines the time interval during which particles reside and transfer heat in the heat exchanger section. For particles initial conditions are nearly stationary, accelerating particles motion should be considered rather than simply assuming fully developed condition. A way to estimate optimum tube length at different fluid velocity and particle sizes is suggested based on the required conditioning time for heat transfer from the flue gas to solid particles.

  • PDF

Development of the active magnetic regenerative refrigerator for room temperature application (상온 능동형 자기 재생 냉동기의 개발)

  • Park, I.;Kim, Y.;Jeong, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.60-64
    • /
    • 2012
  • In this paper, an investigation of a room temperature active magnetic regenerative refrigerator is carried out. Experimental apparatus includes two active magnetic regenerators containing 186 g of Gd spheres. Four E-type thermocouples are installed inside the Active magnetic regenerator(AMR) to observe the instantaneous temperature variation of AMR. Both warm and cold heat exchangers are designed for large temperature span. The cold heat exchanger, which separates the two AMRs, employs a copper tube with length of 80 mm and diameter of 6.35 mm. In order to minimize dead volume between the warm heat exchanger and AMRs, the warm heat exchangers are located close to the AMRs. The deionized water is used as a heat transfer fluid, and maximum 1.4 T magnetic field is supplied by Halbach array of permanent magnets. The AMR plate, which contains the warm and the cold heat exchangers and the AMRs, has reciprocating motion using a linear actuator and each AMR is alternatively magnetized and demagnetized by a Halbach array of permanent magnet. Since the gap of the Halbach array of permanent magnets is 25 mm and two warm heat exchangers have the motion through it, a compact printed circuit heat exchanger (PCHE) is used as a warm heat exchanger. A maximum no-load temperature span of 26.8 K and a maximum cooling power of 33 W are obtained from the fabricated Active Magnetic Regenerative Refrigerator (AMRR).

Analysis for Air-Side Convective Heat Transfer Characteristics in Compact Heat Exchangers (밀집형 열교환기 내 공기 측 대류열전달특성)

  • Moh, Jeong-Hah;Lee, Sang-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1443-1448
    • /
    • 2009
  • Numerical analysis has been carried out to investigate air-side convective heat transfer characteristics in compact heat exchangers with continuous plate fins. Simulation results such as air flow and temperature distributions are presented, and heat transfer characteristics are compared for various inlet conditions. Results from various turbulence models are also compared for applicability. There is large difference between the local heat transfer coefficient distributions along the cylinder wall for circular tubes. Colburn j factors from the calculated results of circular and flat tubes in the heat exchangers are compared for various Reynolds number. The predicted results in this study can be applied to the optimal design of air conditioning system. with compact heat exchanger.

  • PDF

Performance Evaluation of plate heat exchanger with chevron angle variation (쉐브론 각도변화에 따른 판형 용액열교환기의 성능평가)

  • Kwon, Oh-Kyung;Cha, Dong-An;Yun, Jae-Ho;Kim, Hyo-Sang
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2363-2368
    • /
    • 2008
  • The objectives of this paper are to measure the heat transfer and pressure drop of the plate heat exchangers for absorption system applications. Three types of plate heat exchangers with different chevron angles are tested in the present experiment. Heat transfer and pressure drop performance of plate heat exchangers are measured in various operating conditions, and compared each other. The results show that the heat transfer rate of high theta ($120^{\circ}$) and mixed theta plate heat exchanger increases about 118% and 98% at the solution flow rate 350 kg/h compared to that of low theta ($60^{\circ}$), respectively. The effectiveness of high theta was evaluated about $0.70{\sim}0.83$ in this experimental range.

  • PDF

A study of defrosting behavior according to surface characteristics in a fin-tube heat exchanger (표면 특성에 따른 휜-관 열교환기의 제상 거동에 관한 연구)

  • Lee, Kwan-Soo;Kim, Jun-Mo;Ji, Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.921-927
    • /
    • 1999
  • In this study, the defrosting behaviors according to the surface characteristics in the fin-tube heat exchanger is experimentally examined. It is found that the draining rate of the hydrophilic and hydrophobic heat exchangers are evenly dispersed during defrosting, compared with that of the bare one. It is caused by the high density frost for the hydrophilic heat exchanger, and surface characteristic for the hydrophobic heat exchanger, respectively. The rest period of the hydrophilic and hydrophobic heat exchangers are shorter and their weight of residual water are smaller than those of the bare heat exchanger The hydrophilic and hydrophobic heat exchangers are more effective than the bare one in terms of defrosting efficiency, and the hydrophobic heat exchanger is better than the hydrophilic one.

  • PDF

Performance Analysis of R-1270(Propylene) Refrigeration System Using Internal Heat Exchanger (내부 열교환기를 이용한 R-1270용 냉동시스템의 성능 분석)

  • Ku, Hak-Keun
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.36-42
    • /
    • 2014
  • This paper considers the influence of internal heat exchangers on the efficiency of a refrigerating system using R-1270. These internal heat exchangers(liquid-gas or suction-line heat exchangers) can, in some cases, yield improved system performance while in other cases they degrade system performance. A steady state mathematical model is used to analysis the performance characteristics of refrigeration system with internal heat exchanger. The influence of operating conditions, such as the mass flowrate of R-1270, inner diameter tube and length of internal heat exchanger, to optimal dimensions of the heat exchanger is also analyzed. The main results were summarized as follows : the mass flowrate of R-1270, inner diameter tube and length of internal heat exchanger, and effectiveness have the influences on the cooling capacity, compressor work and RCI(Relative Capacity Index) of this system. With a thorough grasp of it is possible to design the R-1270 compression refrigeration cycle using internal heat exchanger.

Performance Analysis of R744 (Carbon Dioxide) Transcritical Refrigeration System Using Internal Heat Exchanger (내부 열교환기를 이용한 R744용 초임계 냉동사이클의 성능 분석)

  • Son, Chang-Hyo;Oh, Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.459-465
    • /
    • 2009
  • This paper considers the influence of internal heat exchangers to the efficiency of a refrigerating system. These internal heat exchangers(liquid-suction or suction-line heat exchangers) can, in some cases, yield improved system performance while in other cases they degrade system performance. A steady state mathematical model is used to analysis the performance characteristics of refrigeration system with internal heat exchanger. The influence of operating conditions, such as gas cooler pressure and evaporation temperatures, superheat in the evaporator and temperature of gas cooler outlet, to optimal dimensions of the heat exchanger is also analyzed in the paper. The main results were summarized as follows : the mass flowrate of R744, inner diameter tube and length of internal heat exchanger, and effectiveness have an effect on the cooling capacity, compressor work and RCI(Relative capacity index) of this system. With a thorough grasp of these effect, it is necessary to design the R744 compression refrigeration cycle using internal heat exchanger.

Maximum Power Output Condition of the Binary Power Cycle Composed of Two Carnot Cycles (이중 동력 사이클의 최대 출력 조건)

  • 김창욱;김수연;정평석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.349-354
    • /
    • 1991
  • The power output behavior of the binary cycle composed of two Carnot cycles is analyzed with considering heat transfer processes, in which the finitely constant temperature differences between heat sources and working fluids exists. The power output has the maximum value as an extremum for cycle temperatures and capacities of heat exchangers. In the internally reversible cycle, the power output is independent of the cycle temperature in the intermediate heat exchanger. In this case when the total capacities of heat exchangers are given, three heat exchangers have the same capacities at the maximum power output condition. In addition, when the cycle is not extremum for cycle temperatures and capacities of heat exchangers. At the maximum power output condition, the capacity of heat exchanger at the cold side is slightly more than the hot side as the cycle effectiveness decreases.