• Title/Summary/Keyword: heat exchangers

Search Result 853, Processing Time 0.026 seconds

Numerical and statistical analysis of Newtonian/non-Newtonian traits of MoS2-C2H6O2 nanofluids with variable fluid properties

  • Manoj C Kumar;Jasmine A Benazir
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.341-352
    • /
    • 2024
  • This study investigates the heat and mass transfer characteristics of a MoS2 nanoparticle suspension in ethylene glycol over a porous stretching sheet. MoS2 nanoparticles are known for their exceptional thermal and chemical stability which makes it convenient for enhancing the energy and mass transport properties of base fluids. Ethylene glycol, a common coolant in various industrial applications is utilized as the suspending medium due to its superior heat transfer properties. The effects of variable thermal conductivity, variable mass diffusivity, thermal radiation and thermophoresis which are crucial parameters in affecting the transport phenomena of nanofluids are taken into consideration. The governing partial differential equations representing the conservation of momentum, energy, and concentration are reduced to a set of nonlinear ordinary differential equations using appropriate similarity transformations. R software and MATLAB-bvp5c are used to compute the solutions. The impact of key parameters, including the nanoparticle volume fraction, magnetic field, Prandtl number, and thermophoresis parameter on the flow, heat and mass transfer rates is systematically examined. The study reveals that the presence of MoS2 nanoparticles curbs the friction between the fluid and the solid boundary. Moreover, the variable thermal conductivity controls the rate of heat transfer and variable mass diffusivity regulates the rate of mass transfer. The numerical and statistical results computed are mutually justified via tables. The results obtained from this investigation provide valuable insights into the design and optimization of systems involving nanofluid-based heat and mass transfer processes, such as solar collectors, chemical reactors, and heat exchangers. Furthermore, the findings contribute to a deeper understanding of stretching sheet systems, such as in manufacturing processes involving continuous casting or polymer film production. The incorporation of MoS2-C2H6O2 nanofluids can potentially optimize temperature distribution and fluid dynamics.

The Comparison of the In-Situ Thermal Response Tests and CFD Analysis of Vertical-type Geothermal Heat Exchanger (수직형 지중 열교환기의 현장 열응답 시험과 CFD 해석 비교)

  • Sim, Yong-Sub;Lee, Hee-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3164-3169
    • /
    • 2013
  • In this study, a series of CFD analysis was performed in order to predict the leaving water temperature and the slope of in-situ thermal response tests of the vertical-type geothermal heat exchangers. The geothermal heat exchanger and surrounding ground formation were modeled using GAMBIT and simulation was used by utilizing FLUENT which is commercial CFD code. Comparing with the results of CFD and in-situ thermal response tests, the results of CFD was presented good agreement with $0.5^{\circ}C$ difference of Leaving Water Temperature and with 1.6% difference of the Slope.

An experimental study on heat transfer augmentation in fluidized bed heat exchanger (유동층형(流動層形) 열교환기(熱交換器)에서 전열증진(傳熱增進)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Yoo, Ji-Oh;Seo, Jeong-Yun
    • Solar Energy
    • /
    • v.13 no.2_3
    • /
    • pp.91-106
    • /
    • 1993
  • The purpose of this study was to investigate the enhancement of heat transfer coefficient in double pipe fluidized bed heat exchangers. The inner tube used a smooth tube and a finned tube equipped with longitudinal fins. The heat transfer coefficients between the heated tube and fluidized bed of alumina beads were calculated as a function of fluidized velocity in various particle sizes($d_p$=0.41, 0.54, 0.65, 0.77mm) and static bed heights($H_o$=50, 100, 150, 200, 250mm). The coefficient for finned tube is higher than for smooth tube. And the maximum increasing rate is 7.8 times in smooth tube and 12.9 times in finned tube.

  • PDF

Prediction of Cooling Performance for Indirect Evaporative Cooling System Using Danpla Sheet (단프라시트를 적용한 간접식 증발냉각 장치의 냉각 성능 예측)

  • Kim, Myung-Ho;Kim, Byoung Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.892-897
    • /
    • 2020
  • Previous plastic heat exchangers are expensive because the mold must be newly manufactured depending on the air conditioning space. On the other hand, danpla is so thin that the heat exchange performance is excellent. Moreover, danpla can be used easily in ventilation systems in view of fabrication. This study proposes correlations for the cooling performance of an indirect evaporative cooling system. The experimental apparatus consisted of a heat exchanger, spray nozzle, fan, thermostat, pump, and measuring sensors for temperature, humidity, and airflow rate. The results showed that the effectiveness decreased gradually as the airflow rate increased. In addition, there was an optimal condition in terms of effectiveness. The performance prediction correlations were determined using the experimental data from various conditions. The proposed correlations showed performance accuracies within 4 % error.

Numerical Study of Thermo-Fluid Features of Electrically Conducting Fluids in Tube Bank Heat Exchangers Exposed to Uniform Magnetic Fields (관군 열교환기에서 균일 자기장에 의한 전기 전도성 유체의 열유동 특성에 관한 수치해석 연구)

  • Oh, Jin Ho;Kang, Namcheol;Park, Il Seouk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.659-665
    • /
    • 2017
  • When an electrically conducting fluid flows through a staggered tube bank, the heat transfer and fluid flow features are changed by the externally introduced magnetic field. This study provides a numerical investigation of this phenomenon. Heat and fluid flows are investigated for unsteady laminar flows at Reynolds numbers of 50 and 100 with the Hartmann number gradually increasing from zero to 100. As the Hartmann number increases, and owing to the effects of the introduced magnetic field, the velocity boundary layer near the tube wall is thinned, the flow separation is delayed downstream, and the shrinkage of a recirculation zone formed near the rear side is observed. Based on these thermo-fluid deformations, the resulting changes in the local and average Nusselt number are investigated.

Analysis of Particles Motion in Vertical Rayleigh Flow (수직 Rayleigh 유동내의 입자 거동 해석)

  • Ko, Seok-Bo;Jun, Yong-Du;Lee, Kum-Bae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.6
    • /
    • pp.447-456
    • /
    • 2007
  • Suspended particles behavior when they go through a vertical riser with heat transfer is of significant concern to system designers and operators in pneumatic transport, various processes such as in chemical, pharmaceutical and food industries. When it comes with the energy system, that knowledge is critical to the reliable design practices of related equipment as heat exchangers, especially in the phase of system scale-up. Without haying a good understanding of the related physics, many scale-up practices based on their pilot plant experience suffer from unexpected behaviors and problems of unstable fluidization typically associated with excessive pressure drop, pressure fluctuation and even unsuccessful particle circulation. In the present study, we try to explain the observed phenomena with related physics, which may help understanding of our unanswered experiences and to provide the designers with more reliable resources for their work. We selected hot exhaust gas with solid particle that goes through a heat exchanger riser as our model to be considered. The effect of temperature change on the gas velocity, thermodynamic properties, and eventually on the particles motion behavior is reviewed along with some heat transfer analyses. The present study presents an optimal riser length at full scale under given conditions, and also defines the theoretical limiting length of the riser. The field data from the numerical analysis was validated against our experimental results.

Evaluation on in-situ Thermal Performance of Coaxial-type Ground Heat Exchanger with Different Configurations (이중관형 지중열교환기 구성에 따른 현장 열성능 평가)

  • Lee, Seokjae;Jung, Hyun-seok;Oh, Kwanggeun;Park, Sangwoo;Choi, Hangseok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.4
    • /
    • pp.8-15
    • /
    • 2019
  • In order to design coaxial-type Ground Heat Exchangers (GHEXs) efficiently, the effect of components (i.e, heat exchange pipe and grouting material) on the thermal performance of coaxial-type GHEXs should be identified in advance. In this paper, three coaxial-type GHEXs with different configurations were constructed in a test bed. Then, the effect of heat exchange pipes and grouting materials on the thermal performance of coaxial-type GHEXs was investigated by performing in-situ thermal response tests (TRTs) and thermal performance tests (TPTs). In the TRTs, the effective thermal conductivities of the coaxial-type GHEXs with concrete grouting and STS pipes were improved by 6.15 and 22.7%, respectively compared to those of bentonite grouting and HDPE pipes. Additionally, in the TPTs, the use of concrete grouting and STS pipes in the coaxial-type GHEXs enhanced the in-situ thermal performance by 15 and 33.8%, respectively.

Numerical Study on the Performance of a Microchannel Heat Exchanger with a Novel Channel Array (새로운 채널 배열을 통한 마이크로채널 열교환기 성능 향상 수치 연구)

  • Jeon, Seung-Won;Lee, Kyu-Jung;Moon, Dong-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1119-1126
    • /
    • 2011
  • In conventional microchannel heat exchangers, only one kind of fluid (hot or cold) flows in each plate. The channels contain different kinds of fluid depending on the vertical position, but they have the same kind of fluid at all horizontal positions. Therefore, there is a slower heat transfer rate in the horizontal direction than in the vertical direction. We propose a microchannel heat exchanger in which hot and cold fluid flows alternately in each plate to improve the thermal performance. This novel channel array requires a special design for the inlet and outlet. The proposed channel array has a faster heat transfer rate than a conventional channel array. The thermal performance of the novel channel array increases with increasing Reynolds number and Prandtl number, but it decreases as the ratio of solid to fluid thermal conductivity increases.

Study on Thermal Stress Occurred in Concrete Energy Pile During Heating and Cooling Buildings (냉난방 가동 모사에 따른 콘크리트 에너지파일의 열응력 해석에 대한 연구)

  • Sung, Chihun;Park, Sangwoo;Kim, Byungyeon;Jung, Kyoungsik;Choi, Hangseok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.2
    • /
    • pp.12-18
    • /
    • 2015
  • The energy pile, used for both structural foundations and heat exchangers, brings about heat exchange with the ground formation by circulating a working fluid for heating and cooling buildings. As heat exchange occurs in the energy pile, thermal stress and strain is generated in the pile body and surrounding ground formation. In order to investigate the thermo-mechanical behavior of an energy pile, a comprehensive experimental program was conducted, monitoring the thermal stress of a cast-in place energy pile equipped with five pairs of U-type heat exchanger pipes. The heating and cooling simulation both continued for 30 days. The thermal strain in the longitudinal direction of the energy pile was monitored for a 15 operation days and another 15 days monitoring followed, without the application of heat exchange. In addition, a finite element model was developed to simulate the thermo-mechanical behavior of the energy pile. A non-linear contact model was adopted to interpret the interaction at the pile-soil interface, and thermal-induced structure mechanics was considered to handle the thermo-mechanical coupled multi-field problem.

A Study on Plate & Shell type Evaporator in HVAC System for Offshore Plant (해양플랜트 HVAC 시스템용 플레이트·쉘 타입 증발기에 관한 연구)

  • Park, Jae-Hong
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.1
    • /
    • pp.33-40
    • /
    • 2020
  • Chiller systems which have better temperature stability than Direction expansion coils are often used as condensing units in HVAC systems for offshore plants. Large capacity compressors and electronic expansion valves in chiller systems are mostly imported, and the size of a chiller system depends on heat exchangers such as evaporators and condensers which are locally produced. Due to limited space in the offshore plants, shipyards are demanding manufacturers to make equipment compact. In this paper, a shell & tube heat exchanger, which is used as an evaporator in the conventional flooded chiller system, is replaced by a newly developed compact plate & shell heat exchanger. The main development process of the plate & shell heat exchanger is introduced, and its performances were experimentally evaluated with a real flooded chiller system, and the results are presented.