• 제목/요약/키워드: heat equivalent

검색결과 415건 처리시간 0.029초

오스테나이트계 스테인레스강의 육성 용접부에서 고온균열 감수성에 미치는 용접입열의 영향

  • 김대영;김희진
    • Journal of Welding and Joining
    • /
    • 제6권2호
    • /
    • pp.40-46
    • /
    • 1988
  • The effect of heat input on the content of residual .delta.-ferrite and the hot cracking susceptibility in the austenitic stainless steel overlaid on the carbon steel was studied in the range of heat input from 7.5 to 15.1 KJ/cm. Present study shows that residual .delta.-ferrite content in the overlay is mainly determined by the dilution of the base metal (carbon steel) which is in turn affected by heat input, i.e. the amount of dilution decreases as heat input increase. Accordingly, higher heat input results in a substantial increase in Cr equivalent but a little increase in Ni equivalent due to the less dilution of carbon from base metal. This fact can explain the result obtained in this study, i, e, the higher content of .delta.-ferrite in the weld deposit made with higher heat input. This in turn causes more resistant overlaying weld metal to hot cracking.

  • PDF

고출력 18650 리튬이온 배터리의 발열인자 해석 및 실험적 검증 (Analysis and Experiment Verification of Heat Generation Factor of High Power 18650 Lithium-ion Cell)

  • 강태우;유기수;김종훈
    • 전력전자학회논문지
    • /
    • 제24권5호
    • /
    • pp.365-371
    • /
    • 2019
  • This study shows the feasibility of the parameter of the 1st RC parallel equivalent circuit as a factor of the heat generation of lithium-ion cell. The internal resistance of a lithium-ion cell consists of ohmic and polarization resistances. The internal resistances at various SOCs of the lithium-ion cell are obtained via an electrical characteristic test. The internal resistance is inversely obtained through the amount of heat generated during the experiment. By comparing the resistances obtained using the two methods, the summation of ohmic and polarization resistances is identified as the heating factor of lithium-ion battery. Finally, the amounts of heat generated from the 2C, 3C, and 4C-rate discharge experiments and the COMSOL multiphysics simulation using the summation of ohmic and polarization resistances as the heating parameter are compared. The comparison shows the feasibility of the electrical parameters of the 1st RC parallel equivalent circuit as the heating factor.

등가열교환율을 적용한 현장타설 에너지파일 설계법 (Design Method for Cast-in-place Energy Pile Considering Equivalent Heat Exchange Rate)

  • 민선홍;박상우;정경식;최항석
    • 대한토목학회논문집
    • /
    • 제33권3호
    • /
    • pp.1049-1061
    • /
    • 2013
  • 본 연구에서는 현장타설 에너지파일의 열교환 파이프 배치 형태별 열교환율을 전산유체해석 프로그램(FLUENT)을 이용하여 평가하고, 이를 이용하여 에너지파일의 설계법을 제시하였다. 등가열교환율을 산정하기 위해 동일한 현장타설말뚝 제원에 대해 열교환파이프 배치 형태를 W-형(직렬), 복합 U-형(병렬 4쌍), 나선형의 3가지로 고려하였다. 건물측 부하조건은 여름철 냉방운용를 모사하기 위해 순환수의 에너지파일 유입온도, 즉 히트펌프 유출온도(Leaving water temperature, LWT)를 $35^{\circ}C$로 일정하게 유지하여 에너지파일 유출온도, 즉 히트펌프 유입온도(Entering water temperature, EWT) 변화를 관찰하였다. 지반에 최대 가상부하를 적용한 경우(100시간 연속 냉방부하 조건)에는 3가지 열교환기 형태가 유사한 열교환율을 보인 반면, 실제 히트펌프 가동에 의한 건물 냉방운용을 모사하기 위해 간헐적으로 일일 8시간 운용-16시간 정지를 7일간 반복 해석한 경우에는 W-형(직렬연결)과 복합 U-형(병렬 4쌍) 열교환기는 유사한 열교환율을 보이나, 나선형 열교환기는 파이프 루프 상호 간 열간섭으로 인해 복합 U-형 열교환기에 비해 약 86%의 열교환율을 갖는 것으로 평가되었다. 전산유체해석에 의해 계산된 열교환파이프 배치 형태별 에너지파일의 등가열교환율을 에너지파일 설계프로그램(PILESIM2)에 적용하여 다양한 형상의 현장타설 에너지파일에 대한 설계법과 대표적인 설계변수에 대한 설계도표를 제시하였다.

균질화기법을 이용한 복합재료의 등가 열전도계수의 계산 (Determination of Equivalent Thermal Conductivities of Composite Materials Using Homogenization Technique)

  • 이진희;이봉래
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1245-1252
    • /
    • 1994
  • A solution of heat transfer problems of composite materials has been tried using homogenization technique. Homogenization technique, which was derived by applying asymptotic expansion to the standard finite element method, helped compute the equivalent thermal conductivity matrices of base cells which constituted the composite material with repeated patterns. The homogenization technique made it possible to compute the solution of the heat transfer problem of composite materials with lower degrees of freedom compared to those of other numerical methods. The equivalent thermal conductivities computed by computed by homogenization technique are also applicable to other numerical methods such as finite difference method.

모터사이클 디스크 브레이크 형상에 따른 방열해석에 관한 연구 (Study on Analysis of Heat Dissipation due to Shape of Motorcycle Disc Brake)

  • 조재웅;한문식
    • 한국기계가공학회지
    • /
    • 제12권4호
    • /
    • pp.100-107
    • /
    • 2013
  • This study aims to improve the heat performance of motor cycle disk due to the number of holes by analyzing 6 kinds of disk models. This disk performance depends on the efficiency at emitting the heat. To raise the efficiency of heat emission, holes with circle or another configuration are made on disks to emit heat fast. The distribution of temperature, heat flux, deformation and stress are analyzed. As the number of holes on disk increases, the performance of heat emission is improved. Equivalent stress is decreased and durability is improved as the number of holes on disk increases. Though the number of holes on disk is increased, the performances of heat emission and durability do not become better. The optimal model can be found by comparing models each other through this analysis result. Through this study result, the configuration of motor cycle disk is designed with optimal heat emission and durability by comparing models.

고정 튜브시트를 갖는 수평형 열교환기의 등가 모델링을 이용한 튜브 건전성 평가 (Evaluation of Integrity of the Tubes in the Horizontal Fixed Tubesheet Heat Exchanger by Using Equivalent Modeling)

  • 전윤철;김태완;정동관
    • 대한기계학회논문집A
    • /
    • 제26권1호
    • /
    • pp.179-187
    • /
    • 2002
  • Finite element analysis was performed to evaluate the integrity of the tubes in the fixed tubesheet of horizontal type heat exchanger under operating condition. For the finite element analysis of the heat exchanger, tubes and tubesheets were equivalently modeled with concentroidal hexagonal columns and solid plates having equivalent properties for the convenience of finite element modeling, respectively. Load combination of tube pressure and thermal expansion most likely to precipitate possible failure of the tubes was selected and applied to the finite element analysis. The compressive stresses of the tubes were calculated based on displacements of each tube, which were obtained from anile element analysis. Finally, the maximum tube stress was compared with the design criterion of ASME Boiler and Pressure Vessel Code Section VIII.

Multi-scale heat conduction models with improved equivalent thermal conductivity of TRISO fuel particles for FCM fuel

  • Mouhao Wang;Shanshan Bu;Bing Zhou;Zhenzhong Li;Deqi Chen
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.1140-1151
    • /
    • 2023
  • Fully Ceramic Microencapsulated (FCM) fuel is emerging advanced fuel material for the future nuclear reactors. The fuel pellet in the FCM fuel is composed of matrix and a large number of TRistructural-ISOtopic (TRISO) fuel particles which are randomly dispersed in the SiC matrix. The minimum layer thickness in a TRISO fuel particle is on the order of 10-5 m, and the length of the FCM pellet is on the order of 10-2 m. Hence, the heat transfer in the FCM pellet is a multi-scale phenomenon. In this study, three multi-scale heat conduction models including the Multi-region Layered (ML) model, Multi-region Non-layered (MN) model and Homogeneous model for FCM pellet were constructed. In the ML model, the random distributed TRISO fuel particles and coating layers are completely built. While the TRISO fuel particles with coating layers are homogenized in the MN model and the whole fuel pellet is taken as the homogenous material in the Homogeneous model. Taking the results by the ML model as the benchmark, the abilities of the MN model and Homogenous model to predict the maximum and average temperature were discussed. It was found that the MN model and the Homogenous model greatly underestimate the temperature of TRISO fuel particles. The reason is mainly that the conventional equivalent thermal conductivity (ETC) models do not take the internal heat source into account and are not suitable for the TRISO fuel particle. Then the improved ETCs considering internal heat source were derived. With the improved ETCs, the MN model is able to capture the peak temperature as well as the average temperature at a wide range of the linear powers (165 W/cm~ 415 W/cm) and the packing fractions (20%-50%). With the improved ETCs, the Homogenous model is better to predict the average temperature at different linear powers and packing fractions, and able to predict the peak temperature at high packing fractions (45%-50%).

에너지 절감형 전기 유류 겸용 온풍기 개발 (Development of Electrical and Oil Heater for Energy Saving)

  • 정성원;김동건;공상호
    • 한국기계가공학회지
    • /
    • 제10권5호
    • /
    • pp.38-43
    • /
    • 2011
  • This study was carried out to evaluate the structural stability of hybrid type fan heater. The evaluation of structural safety of hybrid fan heater was conducted by using Ansys Workbench and CFX-11 under the design condition. The hybrid fan heater was operated by heat transfer for heat source supplied from electric heater and combustion gas. According to result of structural analysis, the maximum equivalent stress of hybrid fan heater was 150MPa when the temperature of heat transfer fluids was $150^{\circ}C$. It was found that the hybrid fan was structurally safe because the value of maximum equivalent stress was smaller than that of yield stress of the material.

냉연 판재의 권취공정에 있어서 장력/열/변형 해석 (Tension/Heat/Thermal Deformation Analysis of a Cold Coiled Strip in Coiling Process)

  • 정영진;이규택;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.39-43
    • /
    • 2002
  • A new model for heat transfer and thermal deformation analysis according to strip mm in coiling process has been proposed. Finite difference analyses for heat transfer of cold rolled coil have been carried out under various coiling tensions and strip crown using the equivalent thermal conductivity for the radial direction of cold rolled coil which is a function of strip thickness, surface characteristics and compressive pressure. The compressive pressure is calculated from a equation expressed as a function of hoop stress and coil tension considering strip mm obtained by experiment. Finite element method for thermal deformation of cold rolled coil has been performed to investigate the effects of the strip crown, the coil tension and temperature. From these analyses, it is found that the axial inhomogeneity of thermal deformation is increased as the strip crown, compressive pressure, and temperature drop in cold coiled strip increase.

  • PDF

A Study on Development of the Three-Dimensional Numerical Model to Analyze the Casting Process: Mold Filling and Solidification

  • Mok Jinho
    • Journal of Mechanical Science and Technology
    • /
    • 제19권7호
    • /
    • pp.1488-1502
    • /
    • 2005
  • A three dimensional model was developed to analyze the mold filling and solidification in the casting processes. The model uses the VOF method for the calculation of the free surface and the modified Equivalent Specific Heat method for the treatment of the latent heat evolution. The solution procedure is based on the SIMPLER algorithm. The complete model has been validated using the exact solutions for phase change heat transfer and the experimental results of broken water column. The three-dimensional model has been applied to the benchmark test and the results were compared to those from experiment, a two-dimensional analysis, and another three dimensional numerical model.