• 제목/요약/키워드: heat equation

검색결과 1,383건 처리시간 0.026초

공기열원 히트펌프를 위한 공기식 지중 열교환기(GAHX) 설계 및 분석 연구 (Ground Air Heat Exchanger Design and Analysis for Air Source Heat Pump)

  • 이광섭;류남진;강은철;이의준
    • 한국지열·수열에너지학회논문집
    • /
    • 제12권2호
    • /
    • pp.1-6
    • /
    • 2016
  • A ground air heat exchanger (GAHX), also called earth air heat exchanger is a useful technology to be integrated with other renewable energy technologies. In this study, ground-air heat exchanger system for the air source heat pump is introduced. The purpose of this study is to design the volumetric flow rate and the length of GAHX system. A GAHX length model equation has been developed and used for calculation. GAHX thermal efficiency are recommended as 75% and 85% in order to optimize pipe length. $2,750m^3/h$, $2,420m^3/h$ of volumetric flow rate on 88.3m, 111.7m length are suggested for providing 7.5kW thermal capacity. And the number of path is recommended more than two to minimize pressure drop. For future study, advanced model equation study with ground thermal behavior and a more efficient GAHX design will be considered.

철근콘크리트조 화재건물의 부재내부온도분포 추정에 관한 연구 (A Study on Calculating the Temperature Distributions in the Concrete members of Reinforced Concrete Building with Fire Damage)

  • 오창희
    • 한국화재소방학회논문지
    • /
    • 제1권1호
    • /
    • pp.11-18
    • /
    • 1987
  • This study is for calculating the equation of the inner temperature in the concrete, mainly by the theory or heat conduction in the solid. The results are as follow ; 1. The equation of the Fourier's heat diffusion is used formally to get the distribution of inner temperature or the concrete members, and this is programed by using the computer. 2. As study in the past, heat constant of concrete is calculated for function of temperature described recommendation heat constant value in comparison with the existing inner heating experimental result.

  • PDF

A Direct Integration Approach for the Estimation of Time-Dependent Boundary Heat Flux

  • Kim, Sin;Kim, Min-Chan;Kim, Kyung-Youn
    • Journal of Mechanical Science and Technology
    • /
    • 제16권10호
    • /
    • pp.1320-1326
    • /
    • 2002
  • In a one-dimensional heat conduction domain with heated and insulated walls, an integral approach is proposed to estimate time-dependent boundary heat flux without internal measurements. It is assumed that the expression of the heat flux is not known a priori. Hence, the present inverse heat conduction problem is classified as a function estimation problem. The spatial temperature distribution is approximated as a third-order polynomial of position, whose four coefficients are determined from the heat fluxes and the temperatures at both ends at each measurement. After integrating the heat conduction equation over spatial and time domain, respectively, a simple and non-iterative recursive equation to estimate the time-dependent boundary heat flux is derived. Several examples are introduced to show the effectiveness of the present approach.

AVHRR/SST로 부터 표층유속을 추정하기 위한 역행렬 모델에서 가중치의 설정 (Determination of Weighting Factor in the Inverse Model for Estimating Surface Velocity from AVHRR/SST Data)

  • 이태신;정종률;강현우
    • 한국해양학회지
    • /
    • 제30권6호
    • /
    • pp.543-549
    • /
    • 1995
  • 연속된 AVHRR/SST 자료를 이용한 표층유속의 추정에 역행렬법이 이용되어 왔다. 본 모델에서 방정식체계는 열방정식과 제한요소로서 가중치가 있는 발산최소화이다. 제한요소는 열방정식의 속도해중에서 null space(Menke, 1984)에 해당하는 해를 구하기 위하여 도입되었으며 이 식들은 격자화한 영역에서 AVHRR/SST의 수온경사에 의해 선형화된다. 실험은 열방정식에 대한 발산최소화의 상대적 중요성을 나타내는 가중치의 크기를 설정하기 위하여 수행하였으며 행렬식은 SVD(Singular Value Decomposion)에 의해 해를 구했다. 실험에서 가상온도분포의 수온경사와 가상유속장의 발산의 크기는 실제해역에 근사시켰다. 열방정식은 착산의 효과를 무시하고 열속이 공간적으로 일정한 것으로 가정하여 구성하였으며 이와같은 가정에 의한 오류를 고려하기 위하여 가상 온도자료에 무작위오류를 도입하였다. 실험결과에 의하면 가중치를 설정하는 기준으로서 상대오차 최소화가 잔차최소화보다 바람직한 것으로 나타났으며 가중치가 $10^{-1}$의 크기일 때 추정유속의 오류가 가장 작은것으로 나타났다.

  • PDF

비대칭 급확대 관로 유동장 내의 열전달 해석에 수정된 경계층 방정식의 적용 가능성 추정 (Prediction of Heat Transfer in Asymmetric Sudden Expansion Flows by using the Modified Boundary Layer Equations)

  • 류명석;맹주성
    • 대한설비공학회지:설비저널
    • /
    • 제14권4호
    • /
    • pp.293-299
    • /
    • 1985
  • This paper describes an economical prediction procedure for heat transfer phenomenon through a channel containing an abrupt asymmetric expansion in flow cross-seetional area. Numerical solutions for the flow field are obtained by the finite difference numerical method applied to the modified boundary layer equations. Modified boundary energy equation is used to analyze heat transfer as modified boundary momentum equation. Predictions of the method compare very favorable with exprimental data. Results of this study by modified boundary layer equation are as follows : 1. The computation time required for the scheme is at least an order of magnitude less than for the numerical solution of the full Navier-stokes and Energy eguations. 2. In laminar flow, the maximum heat transfer occurs downstream of the reattachment point.

  • PDF

열유속 상지연이 존재하는 열전도 현상에 대한 연구 (A Study of the Heat Conduction Phenomena with a Phase Lag of Heat Flux)

  • 김창복;김경근;정한식;정효민;최두열;최순호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권5호
    • /
    • pp.684-690
    • /
    • 2008
  • In most engineering applications related with the heat conduction phenomena, a conventional Fourier heat conduction equation has been successfully applied and it has supplied quite reasonable results. However, it is well known that the Fourier heat conduction equation is failed in the application to the extremely small space and short time, in other words, a nano-scale system and a pico-second time. In this study, non-Fourier effect was evaluated in the heat conduction by considering the concept of a phase lag model. The results show the existence of a heat wave, which means that the heat is transferred with a finite speed while an infinite speed of heat transfer is assumed in the conventional Fourier heat conduction. In addition, the copper and the gold are tested to evaluate the phase lag time between the heat flux and the temperature gradient. The results show that the gold has the heat wave speed faster than that of the copper consistent with the prediction based on an actual experiment.

대구경 타원관을 적용한 건조기용 핀-관 열교환기의 성능특성 (Performance Characteristics of Fin-Tube Heat Exchanger having Large Diameter Oval Tube for Dryer)

  • 배경진;차동안;권오경
    • 설비공학논문집
    • /
    • 제27권1호
    • /
    • pp.8-13
    • /
    • 2015
  • The objective of this paper is to provide design data of fin-tube heat exchanger which have a large diameter oval tube for dryer application. In this study, the heat transfer and pressure drop performance characteristics of the fin-tube heat exchanger were compared with Dittus-Boelter and a new correlation equation using Wilson plot method. The simulation results based on section by section method were compared with experimental results. These results showed that a new correlation equation using Wilson plot method provided better prediction, about 3 to 12%, than the Dittus-Boelter equation, from the experiment comparison. Also, the pressure drop of simulation results showed much more deviation with the experimental results.

타원방정식에 의한 벽면 부근의 난류열유속 모형화 (Near-Wall Modelling of Turbulent Heat Fluxes by Elliptic Equation)

  • 신종근;안정수;최영돈
    • 대한기계학회논문집B
    • /
    • 제28권5호
    • /
    • pp.526-534
    • /
    • 2004
  • A new second-moment closure model for turbulent heat fluxes is proposed on the basis of the elliptic equation. The new model satisfies the near-wall balance between viscous diffusion, viscous dissipation and temperature-pressure gradient correlation, and also has the characteristics of approaching its respective conventional high Reynolds number model far away from the wall. The predictions of turbulent heat transfer in a channel flow have been carried out with constant wall heat flux and constant wall temperature difference boundary conditions respectively. The velocity field variables are supplied from the DNS data and the differential equations only fur the mean temperature and the scalar flux are solved by the present calculations. The present model is tested by direct comparisons with the DNS to validate the performance of the model predictions. The prediction results show that the behavior of the turbulent heat fluxes in the whole region is well captured by the present model.

자동차용 라디에이터의 방열성능설계에 관한 연구 (I)방열성능의 해석 (Design of the Heat Dissipation Rate of Automotive Radiation (I) Analysis of Heat Dissipation)

  • 정종수;이춘식
    • 오토저널
    • /
    • 제11권5호
    • /
    • pp.65-75
    • /
    • 1989
  • A method for analyzing the heat dissipation rates of automotive radiators has been proposed and also a new model equation of heat transfer rate of louvered fins has been proposed and tested. With the method, the effect of various design parameters on the performance of a radiator has also been studied. The proposed model equation for air-side heat transfer has made fair predictions which agree well with the experiments. Also the design value of heat dissipation rate with various fin pitches and radiator size has a good agreement with the heat dissipation of the commercial automotive radiators. Thus, the method of analyzing the radiator performance proposed in this study might be used to design new automotive radiators.

  • PDF

전기장 변화에 따른 3차원 비정상 상태 열전달 연계 해석에 관한 연구 (A Study on the 3-D Unsteady State Heat Transfer Coupled by Conductive Currents)

  • 곽이구;김홍건
    • 한국공작기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.29-34
    • /
    • 2008
  • A modeling technique for the 2-way coupling of heat transfer and conduction currents has been performed to inspire a combined analytical simulation. The 3-D finite element method is used to solve steady conduction currents and heat generation in an aluminum film deposited on a silicon substrate. The model investigates the temperature in the device after the current is applied. The conservation equation of energy, the Maxwell equations for conduction currents, the unsteady state heat transfer equation and the Fourier's law for heat transfer are implemented as a bidirectionally coupled problem. It is found that the strongly coupled temperature and time dependent heat equations give a reasonable results and an explicit solving technique.