• Title/Summary/Keyword: heat diffusion

Search Result 914, Processing Time 0.028 seconds

Anatase TiO2-doped activated carbon fibers prepared by ultrasonication and their capacitive deionization characteristics

  • Kang, Da Hee;Jo, Hanjoo;Jung, Min-Jung;Kim, Kyoung Hoon;Lee, Young-Seak
    • Carbon letters
    • /
    • v.27
    • /
    • pp.64-71
    • /
    • 2018
  • $TiO_2$-doped activated carbon fibers (ACFs) were successfully prepared as capacitive deionization (CDI) electrode materials by facile ultrasonication-assisted process. ACFs were treated with titanium isopropoxide (TTIP) and isopropyl alcohol solutions of different concentrations and then calcinated by ultrasonication without heat-treatment. The results show that a certain amount of anatase $TiO_2$ was present on the ACF surface. The specific capacitance of the $TiO_2$-doped ACF electrode was remarkably improved (by 93.8% at scan rate of $50mV\;s^{-1}$) over that of the untreated ACF electrode, despite decreases in the specific surface area and total pore volume upon $TiO_2$ doping. From the CDI experiments, the salt adsorption capacity and charge efficiency of the sample with TTIP percent concentration of 15% were found to considerably increase by 71.9 and 57.1%, respectively. These increases are attributed to the improved wettability of the electrode, which increases the number of surface active sites and facilitates salt ion diffusion in the ACF pores. Additionally, the Ti-OH groups of $TiO_2$ act as electrosorption sites, which increases the electrosorption capacity.

The Effect of C12A7 and OH Group on the Formation of C3A by Sol-Gel Method (졸-겔법을 이용한 C3A의 생성에 미치는 C12A7과 OH기의 영향)

  • Kim, Jang-Hwan;Rhee, Jhun;Han, Ki-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.1
    • /
    • pp.70-76
    • /
    • 1987
  • The effect of C12A7 and OH group on the synthesis of C3A by the sol-gel process using aluminum-sec-butoxide and calcium nitrate was studied. C3A by sol-gel method was compared with C3A obtained by the conventional method with respect to their reactivity of formation and crystal size. The sol-gel process for initial formation of C12A7 and C3A at lower temperature (1100, 1200$^{\circ}C$) was superior, but that for complete crystallization of C3A at higher temperature (1300, 1400$^{\circ}C$) was inferior to oxide mixture process. When heat treated under the atmosphere oxygen-free dried nitrogen eliminate the influence of OH group in C12A7, the reactivity of C3A from sol-gel sample incorporated OH group were poor, whereas that from oxide mixture sample showed remarkable effect. The poor crystallization of C3A at higher temperature is presumed to be due to the fact that incorporated OH group in C12A7 formed at lowr temperature might interrupt the diffusion of CaO to C12A7 to from C3A. The crystal size and the hydration characteristics of both C3A obtained by different processes exhibited almost the same results.

  • PDF

Cutting Fluid Effluent Removal by Adsorption on Chitosan and SDS-Modified Chitosan

  • Piyamongkala, Kowit;Mekasut, Lursuang;Pongstabodee, Sangobtip
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.492-502
    • /
    • 2008
  • This study examined the adsorption of a synthetic cutting fluid and cutting fluid effluent on chitosan and SDS-modified chitosan, Chitosan and SDS-modified chitosan were prepared in form of beads and fibers. A series of batch experiments were carried out as a function of the initial concentration of cutting fluid, contact time and pH of the fluid. The contact angle study suggested that the SDS-modified chitosan was more hydrophobic than chitosan. The Zeta potential study showed that chitosan, SDS-modified chitosan and synthetic cutting fluid had a point of zero charge (PZC) at pH 7.8, 9 and 3.2, respectively. SDS-modified chitosan has a greater adsorption capacity than chitosan. The experimental results show that adsorption capacity of the cutting fluid on 1.0 g of SDS-modified chitosan at pH 3 and for a contact time of 120 min was approximately 2,500 g/kg. The adsorption capacity of chitosan and SDS-modified chitosan increased with decreasing pH. The Langmuir, Freundlich, and Brunauer Emmett and Teller (BET) adsorption models were used to explain the adsorption isotherm. The Langmuir isotherm fitted well with the experimental data of chitosan while the BET isotherm fitted well with the SDS-modified chitosan data. Pseudo first- and second-order kinetic models and intraparticle diffusion model were used to examine the kinetic data. The experimental data was fitted well to a pseudo second-order kinetic model. The significant uptake of cutting fluid on chitosan and SDS-modified chitosan were demonstrated by FT-IR spectroscopy, SEM and heat of combustion.

Microscopic characterization of pretransition oxide formed on Zr-Nb-Sn alloy under various Zn and dissolved hydrogen concentrations

  • Kim, Sungyu;Kim, Taeho;Kim, Ji Hyun;Bahn, Chi Bum
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.416-424
    • /
    • 2018
  • Microstructure of oxide formed on Zr-Nb-Sn tube sample was intensively examined by scanning transmission electron microscopy after exposure to simulated primary water chemistry conditions of various concentrations of Zn (0 or 30 ppb) and dissolved hydrogen ($H_2$) (30 or 50 cc/kg) for various durations without applying desirable heat flux. Microstructural analysis indicated that there was no noticeable change in the microstructure of the oxide corresponding to water chemistry changes within the test duration of 100 days (pretransition stage) and no significant difference in the overall thickness of the oxide layer. Equiaxed grains with nano-size pores along the grain boundaries and microcracks were dominant near the water/oxide interface, regardless of water chemistry conditions. As the metal/oxide interface was approached, the number of pores tended to decrease. However, there was no significant effect of $H_2$ concentration between 30 cc/kg and 50 cc/kg on the corrosion of the oxide after free immersion in water at $360^{\circ}C$. The adsorption of Zn on the cladding surface was observed by X-ray photoelectron spectroscopy and detected as ZnO on the outer oxide surface. From the perspective of $OH^-$ ion diffusion and porosity formation, the absence of noticeable effects was discussed further.

The Analysis on the Value of Yongsan National Park and its Economic Effect

  • Chang, In-Seok;Cho, Young-Tae;Lee, Mi-Hong;Park, Shin-Won
    • Land and Housing Review
    • /
    • v.2 no.4
    • /
    • pp.491-501
    • /
    • 2011
  • This study estimated economic value and benefits of Yongsan National Park, which will be constructed by financial investment of the government and objectively estimated the real value of it by understanding the value of the park from a user's view of the park. For this, the value of Yongsan National Park is divided into using value such as carbon reduction and the function of relieving urban heat island as an environmental material and non-using value based on willingness to pay of the public according to the construction of the park. As a result of the analysis, it was found out that the using value of Yongsan National Park would reach 130 million won up to maximum level of 450 million won per year, and the non-using value was analyzed to be worthy of 2,344 won per capita every month. Besides, economic ripple effect that can be expected in the process of the park construction project was analyzed to be a national policy that creates effect on production inducement of 2.6 trillion won and value added of 809.6 billion won and new jobs for 25,620 persons. Considering the value of Yongsan National Park and the effect of the project based on the result of this study, it was found that it could sufficiently secure the validity of implementing the project compared to the financial investment by the government. Therefore, it must be emphasized that diffusion strategy is necessary for national understanding and for a nation to make it understood its appropriateness widely in respect to the construction of Yongsan National Park for the successful construction of Yongsan National Park and to raise its using value in the future.

Study on the Different Effect of Same Taste of Herb;mainly based on "Chuhaisanghannon(注解傷寒論)" by Seongmugi(成無己) (본초(本草)의 동미이용(同味異用)에 대(對)한 연구(硏究);성무기(成無己)의 "주해상한론(注解傷寒論)"을 위주로)

  • Jo, Hak-Jun;Kim, Ho-Hyun;Leem, Kang-Hyun
    • Journal of Korean Medical classics
    • /
    • v.21 no.1
    • /
    • pp.93-110
    • /
    • 2008
  • We got some conclusion about the function of five tastes from individual peculiarity, from "Sanghanjapbyeongnon(傷寒雜病論)" by Sungmoogi, like below. 1. Five tastes[五味] have their general function, but herbs of one tastes, each has special function, we can define it as individual peculiarity 2. For example, sour taste generally make it convergent, astringent. The sourness of Paeoniae Radix Alba[芍藥] can convergent resin, and be help nutrition, but same of Phaseoli Semen[赤小豆] can make him vomit. 3. Bitterness generally make it down, dry, and solid. Scutellariae Radix[黃芩], Coptidis Rhizoma[黃連] can bring down fever of heart and spleen, but Rhei Radix Et Rhizoma[大黃] eliminates solid illness. 4. Sweetness make it strong, harmonic, relax. Sweetness of Glycyrrhizae Radix[甘草] flows into spleen, make it relax the part of beneath heart. Puerariae Radix[葛根] can make scatter the cold on skin. 5. General nature of hot taste is diffusion, sheen, rampancy. Cinnam omi Ramulus[桂技] eliminates the Pung(風) in Wigi(衛氣). same Zingiberis Rhi zoma[乾薑] make inner cold scattered, and warm stomach. 6. Salty make Gi(氣) down, and slacken solidity, salty Natrii Sulfas[芒硝]removes heat of body. But Alismatis Rhizoma[澤瀉] removes needless water. 7. To know peculiarity of each herb, not only one taste but other combined tastes, and areas medical, agricultural, biologic, etc.

  • PDF

Joining Characteristics of Plasma Sprayed BSCCO Superconducting Coatings (플라즈마 용사 BSCCO(Bismuth Strontium Calcium Copper Oxide) 초전도 피막의 접합 특성)

  • Park, Jung-Sik;Cho, Chang-Eun;Ko, Young-Bong;Park, Kwang-Soon;Park, Kyeung-Chae
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.5
    • /
    • pp.181-186
    • /
    • 2013
  • We performed plasma spraying for 2001 (Bi:Cu = 2:1), 0212 (Sr:Ca:Cu = 2:1:2) oxide powders. $Bi_2Sr_2CaCu_2Ox$ (2212) superconductor has been prepared by PMP-AT (partial melting process-annealing treatment). The 2212 phase is synthesized between Sr-Ca-Cu oxide coating layer (0212) and Bi-Cu oxide coating layer (2001) by movement of partial melted Bi on 2001 layer and the diffusion reaction (Cu, Sr, Ca) after PMP-AT. There are two different coating layers on joining process. The one is ABAB coating layers and the other is BAAB coating layers by arrangement of 2001 (A), 0212 (B) layers. We performed heat treatment these two different coating layers processes under same PMP-AT conditions. We obtained Bi-2212 superconducting layers at each experimental condition, and the result of MPMS, the critical temperature was showed about 78 K. But the microstructure images and result of EDS as each experimental variable were showed about the qualitatively different Bi-2212 superconducting phases. We also deduced the generation mechanism of Bi-2212 superconducting layer as a result of these experimental data, microstruc ture images, EDS data and phase diagram.

A Study on the Fischer-Tropsch Synthesis for Production of Hydrocarbon from Syngas under Gas Phase and Supercritical Phase (가스 및 초임계반응하에서 합성가스로부터 탄화수소 제조를 위한 피서트롭스 반응에 관한 연구)

  • Kim, Chul-Ung;Jeong, Soon-Yong;Jeong, Kwang-Eun;Chae, Ho-Jeong;Kim, Tae-Wan;Park, Hyun-Joo;Lee, Sang-Bong;Kim, Jung-Hyun;Han, Jeong-Sik;Jeong, Byung-Hun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.3
    • /
    • pp.15-21
    • /
    • 2011
  • With petroleum reserves dwindling, interest has been increasing worldwide in Fischer-Tropsch synthesis (FT) as a method of producing synthetic liquid fuels and chemicals from coal, natural gas or biomass. In general, FT synthesis is operated through the gas phase fixed-bed reaction system. Recently, there are lots of study in supercritical fluid due to unique characteristics such as the quick diffusion of reactant gas, effective removal of reaction heat, and the in-situ extraction of high molecular weight hydrocarbon, such as wax. In this study, our major aim is to obtain a deeper insight into the effect of the type of support on the reaction performance over a supported cobalt catalyst in a fixed bed reactor.

Metal Foam Flow Field Effect on PEMFC Performance (금속 폼 유로가 고분자전해질 연료전지 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.442-448
    • /
    • 2021
  • Flow field is an important parameter for polymer electrolyte membrane fuel cell (PEMFC) performance to have an effect on the reactant supply, heat and water diffusion, and contact resistance. In this study, PEMFC performance was investigated using Cu foam flow field at the cathode of 25 cm2 unit cell. Polarization curve and electrochemical impedance spectroscopy were performed at different pressure and relative humidity conditions. The Cu foam showed lower cell performance than that of serpentine type due to its high ohmic resistance, but lower activation and concentration loss due to the even reactant distribution of porous structure. Cu foam has the advantage of effective water transport because of its hydrophobicity. However, it showed low membrane hydration at low humidity condition. The metal foam flow field could improve fuel cell performance with a uniform pressure distribution and effective water management, so future research on the properties of metal foam should be conducted to reduce electrical resistance of bipolar plate.

Approximate Optimization with Discrete Variables of Fire Resistance Design of A60 Class Bulkhead Penetration Piece Based on Multi-island Genetic Algorithm (다중 섬 유전자 알고리즘 기반 A60 급 격벽 관통 관의 방화설계에 대한 이산변수 근사최적화)

  • Park, Woo-Chang;Song, Chang Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.33-43
    • /
    • 2021
  • A60 class bulkhead penetration piece is a fire resistance system installed on a bulkhead compartment to protect lives and to prevent flame diffusion in a fire accident on a ship and offshore plant. This study focuses on the approximate optimization of the fire resistance design of the A60 class bulkhead penetration piece using a multi-island genetic algorithm. Transient heat transfer analysis was performed to evaluate the fire resistance design of the A60 class bulkhead penetration piece. For approximate optimization, the bulkhead penetration piece length, diameter, material type, and insulation density were considered discrete design variables; moreover, temperature, cost, and productivity were considered constraint functions. The approximate optimum design problem based on the meta-model was formulated by determining the discrete design variables by minimizing the weight of the A60 class bulkhead penetration piece subject to the constraint functions. The meta-models used for the approximate optimization were the Kriging model, response surface method, and radial basis function-based neural network. The results from the approximate optimization were compared to the actual results of the analysis to determine approximate accuracy. We conclude that the radial basis function-based neural network among the meta-models used in the approximate optimization generates the most accurate optimum design results for the fire resistance design of the A60 class bulkhead penetration piece.