• Title/Summary/Keyword: heat conduction model

Search Result 241, Processing Time 0.023 seconds

Study of the local heat transfer characteristic on the louver fin by using the expansion model (확대 모델을 이용한 루버 휜의 국부 열전달 특성변화에 관한 연구)

  • Kim, Jung-Kuk;Koyama, Shigeru;Kuwahara, Ken;Park, Byung-Duck;Kim, Dong-Hwi;Sa, Yong-Cheol
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.227-232
    • /
    • 2008
  • The present study was investigated the local heat transfer characteristics and temperature distribution on the louver fin by using the expansion model. Heat transfer rate, frost mass and temperature distribution of the louver fin under frosting condition were experimentally investigated. Local heat transfer rate and heat flux on the louver were analyzed by the conduction heat transfer between top and lower part of the louver. The experimental key parameter was brine inlet temperature(-5, -10, $-15^{\circ}C$). The heat transfer performance and frost mass at brine temperature of $-15^{\circ}C$ were increased by maximum 3 time than the brine temperature of $-5^{\circ}C$. At all experimental case, local heat transfer rate and heat flux of the louver were almost symmetry at the louver number of 6. Especially, local heat transfer rate and heat flux were maximum increased on the louver number of 4 and 8.

  • PDF

3D thermo-hydro-mechanical coupled discrete beam lattice model of saturated poro-plastic medium

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.125-145
    • /
    • 2020
  • In this paper, we present a 3D thermo-hydro-mechanical coupled discrete beam lattice model of structure built of the nonisothermal saturated poro-plastic medium subjected to mechanical loads and nonstationary heat transfer conditions. The proposed model is based on Voronoi cell representation of the domain with cohesive links represented as inelastic Timoshenko beam finite elements enhanced with additional kinematics in terms of embedded strong discontinuities in axial and both transverse directions. The enhanced Timoshenko beam finite element is capable of modeling crack formation in mode I, mode II and mode III. Mode I relates to crack opening, mode II relates to in-plane crack sliding, and mode III relates to the out-of-plane shear sliding. The pore fluid flow and heat flow in the proposed model are governed by Darcy's law and Fourier's law for heat conduction, respectively. The pore pressure field and temperature field are approximated with linear tetrahedral finite elements. By exploiting nodal point quadrature rule for numerical integration on tetrahedral finite elements and duality property between Voronoi diagram and Delaunay tetrahedralization, the numerical implementation of the coupling results with additional pore pressure and temperature degrees of freedom placed at each node of a Timoshenko beam finite element. The results of several numerical simulations are presented and discussed.

Rigorous Dynamic Simulation of PTSA Process (PTSA 공정의 상세 동적 모사)

  • Lee, Hye-Jin;Ko, Dae-Ho;Moon, Il;Choi, Dae-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.309-309
    • /
    • 2000
  • The main objective of this study is to understand the regeneration step of the PTSA(Pressure and thermal swing adsorption) process below the atmospheric pressure by rigorous dynamic simulation. This target process is to recover toluene using activated carbon as an adsorbent. To do this, the dynamic simulations for the regeneration step are performed at 360, 490, 590mmHg and at high temperature after the simulation of the adsorption step at latm and 298K. A mathematical model was developed to simulate the column dynamics of the adsorption systems. This model is based on non-equilibrium, non-isothermal and non-adiabatic conditions, and axial dispersion and heat conduction are also considered. Heat transfer resistances are considered in gas-solid, gas-column wall and column wall-outside air. The LDF(Linear Driving Force) approximation model describes the mass transfer rate between the gas and solid phase. This study shows that the recovery of toluene by PTSA is more preferable than that by general TSA.

  • PDF

Simulation of Quench in Pancake-shaped Superconducting Magnet Using a Quasi-three-dimensional Model

  • Wang, Qiuliang;Yoon, Cheon-Seog;Kim, Kee-Man
    • Progress in Superconductivity
    • /
    • v.1 no.2
    • /
    • pp.125-134
    • /
    • 2000
  • A quench phenomenon is caused by an external disturbance in a superconducting magnet, where the magnet is operating in a cryogenic environment. The heat coupling between the layers and pancakes of the magnet can induce the normal zone propagation with fast speed. In order to analyze quench behavior in a pancake-shaped superconducting magnet, a quasi-three-dimensional model is proposed. A moving mesh finite volume method is employed in solving the heat conduction equation. The quench process of the superconducting magnet is studied under the various operating conditions and cooling conditions.

  • PDF

The Evaluation of Heat Flux by Evaporating Droplet on the Hot Surface (고온 표면에 부착된 증발 액적에 의한 열유속 변화 추정)

  • Shin, Woon-Chul;Bae, Sin-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.764-771
    • /
    • 2007
  • The objective of the present work is to evaluate the evaporation heat flux of deposited droplet on the hot surface by using of inverse heat transfer technique. On the basis of measured temperature, a integral form solution is determined for the transient temperatures beyond the two positions by using Green's function technique. This method first approximates the temperature data with a half polynomial series of time. we compared this result with constant radius model in single phase regime, nucleate boiling regime, film boiling regime respectively. this paper performed the experiments as following conditions: (a)the surface temperature is within the range between $80^{\circ}C\;and\;160^{\circ}C$ in the conduction, (b) droplet diameter are 2.4 and 3.0mm. (c) surface roughness is $0.18{\mu}m$.

Thermal response of porous media cooled by a forced convective flow (강제대류에 의해 냉각되는 다공물질의 열응답 특성)

  • 백진욱;강병하;현재민
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.600-609
    • /
    • 1998
  • The experimental investigation of thermal response characteristics by the air flow through the porous media has been carried out. The packed spheres of steel or glass were considered as the porous media in the present study. Temperature distributions of the fluid in the porous media as well as pressure drops through the porous media were measured. The transient temperature variations in the porous media are compared favorably with the analytical results in the high Reynolds number ranges. However, in the low Reynolds number ranges, the experimental data deviate from the analytical results, due to the dominant heat conduction penetration to the upstream direction, which is not considered in the analytical model. The cool-down response of porous media is found to be dependent upon the specific dimensionless time considering the material property and air velocity. The heat discharge process is recommended to be operated until a certain time, considering the cost efficiency.

  • PDF

Dynamic response of heat and mass transfer in blood flow through stenosed bifurcated arteries

  • Charkravarty S.;Sen S.
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.2
    • /
    • pp.47-62
    • /
    • 2005
  • The present study deals with a mathematical model describing the dynamic response of heat and mass transfer in blood flow through bifurcated arteries under stenotic condition. The geometry of the bifurcated arterial segment possessing constrictions in both the parent and the daughter arterial lumen frequently appearing in the diseased arteries causing malfunction of the cardiovascular system, is formulated mathematically with the introduction of the suitable curvatures at the lateral junction and the flow divider. The blood flowing through the artery is treated to be Newtonian. The nonlinear unsteady flow phenomena is governed by the Navier-Stokes equations while those of heat and mass transfer are controlled by the heat conduction and the convection-diffusion equations respectively. All these equations together with the appropriate boundary conditions describing the present biomechanical problem following the radial coordinate transformation are solved numerically by adopting finite difference technique. The respective profiles of the flow field, the temperature and the concentration and their distributions as well are obtained. The influences of the stenosis, the arterial wall motion and the unsteady behaviour of the system in terms of the heat and mass transfer on the blood stream in the entire arterial segment are high­lighted through several plots presented at the end of the paper in order to illustrate the applicability of the present model under study.

Numerical Simulation of Boiling 2-Phase Flow in a Helically-Coiled Tube (나선형코일 튜브 비등2상 유동 수치해석)

  • Jo J. C.;Kim W. S.;Kim H. J.;Lee Y. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.49-55
    • /
    • 2004
  • This paper addresses a numerical simulation of the flow and heat transfer in a simplified model of helically coiled tube steam generator using a general purpose computational fluid dynamic analysis computer code. The steam generator model is comprised of a cylindrical shell and helically coiled tubes. A cold feed water entered the tubes is heated up, evaporates. and finally become a superheated steam with a large amount of heat transferred continuously from the hot compressed water at higher pressure flowing counter-currently through the shell side. For the calculation of tube side two-phase flow field formed by boiling, inhomogeneous two-fluid model is used. Both the internal and external turbulent flows are simulated using the standard k-e model. The conjugate heat transfer analysis method is employed to calculate the conduction in the tube wall with finite thickness and the convections in the internal and external fluids simultaneously so as to match the fluid-wall-fluid interface conditions properly. The numerical calculations are peformed for helically coiled tubes of steam generator at an integral type pressurized water reactor under normal operation. The effects of tube-side inlet flow velocity are discussed in details. The results of present numerical simulation are considered to be physically plausible based on the data and knowledge from previous experimental and numerical studies where available.

  • PDF

Effects of Space Increment and Time Step to the Accuracy of the Implicit Finite Difference Method in a Two-Dimensional Transient Heat Conduction Problem (이차원과도열전도에 대한 음함수형 유한차분법의 정도에 미치는 공간증분 및 시간간격의 영향)

  • CHO Kwon-Ok;LEE Yong-Sung;OH Hoo-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.1
    • /
    • pp.15-22
    • /
    • 1985
  • The study on computation time, accuracy, and convergency characteristic of the implicit finite difference method is presented with the variation of the space increment and time step in a two-dimensional transient heat conduction problem with a dirichlet boundary condition. Numerical analysis were conducted by the model having the conditions of the solution domain from 0 to 3m, thermal diffusivity of 1.26 $m^2/h$, initial condition of 272 K, and boundary condition of 255.4 K. The results obtained are summarized as follows : 1) The degree of influence with respect to the accuracy of the time step and space increment in the alternating-direction implicit method and Crank-Nicholson implicit method were relatively small, but in case of the fully implicit method showed opposite tendency. 2) To prescribe near the zero for the space increment and tine step in a two dimensional transient problem were good in a accuracy aspect but unreasonable in a computational time aspect. 3) The reasonable condition of the space increment and the time step considering accuracy and computation time could be generalized with the Fourier modulus increment, F, ana dimensionless space increment, X, irrespective of the solution domain.

  • PDF

Thermal Load Calculations on Stud-Frame Walls by Response Coefficient Method (응답계수(應答係數)를 이용(利用)한 건물벽에서의 열부하(熱負荷) 계산(計算))

  • Hwang, Y.K.;Pak, E.T.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.357-368
    • /
    • 1988
  • An application of thermal response coefficient method for obtaining thermal load on stud-frame walls in a typical house is presented. A set of stud-frame walls is two-dimensional heat conduction transients with composite structure. The ambient temperature on the right-hand face of the stud-frame walls is a typical day-cycle input and the room temperature on the left-hand face is a constant input. The desired output is thermal load at the left-hand face. The time-dependent ambient temperature is approximated by a continuous, piecewise-linear function each having one hour interval. The conduction problem is spatially discretized as 8 computer modelings by finite elements to obtain thermal response coefficients. The discretization and round-off errors can be neglected in the range of adequate number of nodes. A 60-node discretization is recommended as the optimum model among 8 computer modelings. Several sets of response coefficients of the stud-frame walls are generated by which the rate of heat transfer through the walls or some temperature in the walls can be calculated for different input histories.

  • PDF