• Title/Summary/Keyword: heat coefficient

Search Result 2,567, Processing Time 0.027 seconds

Evaporation Heat Transfer Characteristics of Carbon Dioxide in the Inner Diameter Tube of 4.57 mm (4.57 mm 세관 열교환기 내 이산화탄소의 증발열전달 특성)

  • Ku, Hak-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.145-151
    • /
    • 2007
  • The evaporation heat transfer coefficient of $CO_2$(R-744) in a horizontal tube was investigated experimentally. The main components or the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator(test section). The test section consists of a smooth, horizontal stainless steel tube of inner diameter of 4.57 mm. The experiments were conducted at mass flux of 200 to $500\;kg/m^2s$, saturation temperature of -5 to $5^{\circ}C$, and heat flux of 10 to $40\;kW/m^2$. The test results showed the heat transfer of $CO_2$ has a greater effect on nucleate boiling more than convective boiling. Mass flux of $CO_2$ does not effect nucleate boiling too much. In comparison with test results and existing correlations, the best fit of the present experimental data is obtained with the correlation of Jung et al. But existing correlations failed to predict the evaporation heat transfer coefficient of $CO_2$, therefore, it is necessary to develope reliable and accurate predictions determining the evaporation heat transfer coefficient of $CO_2$ in a horizontal tube.

Study on Evaporating Heat Transfer of HCs Refrigerants by Changing of Tube Diameter (관경별 탄화수소계 냉매의 증발 열전달에 관한 특성평가)

  • Lee, Kwang-Bae;Lee, Ho-Saeng;Moon, Choon-Geun;Kim, Jae-Dol;Yoon, Jung-In
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.41-42
    • /
    • 2005
  • The experimental apparatus has been set-up as a conventional vapor compression type heat pump system. The test section is a horizontal double pipe heat exchanger. A tube diameter of 12.70 mm, 9.52 mm, 6.35 mm with 1.78 mm,1.52 mm,1.4 mm wall thickness each is used for this investigation. The local evaporating heat transfer coefficients of hydrocarbon refrigerants were superior to that of R-22. and the maximum increasing rate of heat transfer coefficient was found in R-1270. The average evaporating heat transfer coefficient increased with the increase of the mass velocity and it showed the higher values in hydrocarbon refrigerants than R-22. The highest evaporating heat transfer coefficient of all refrigerants was shown in a tube diameter of 6.35 mm with same mass flux.

  • PDF

Characteristics of R-22 and R-134a Two-Phase Flow Vaporization in Horizontal Small Tubes

  • Choi, Kwang-Il;Pamitran, A.S.;Rifaldi, M.;Mun, Je-Cheol;Oh, Jong-Taek
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1528-1535
    • /
    • 2009
  • Characteristics of R-22 and R-134a two-phase vaporization in horizontal small tubes were investigated experimentally. In order to obtain the local heat transfer coefficients, the test was ran under heat flux range of 10 to $40\;kW/m^2$, mass flux range of 200 to $600\;kg/m^2s$, saturation temperature range of 5 to $10^{\circ}C$, and quality up to 1.0. The test section, which was made of stainless steel tube and heated uniformly by applying an electric current to the tube directly, have inner tube diameters of 0.5, 1.5 and 3.0 mm, and lengths of 0.33 and 2.0 m. The effects on heat transfer coefficient of mass flux, heat flux and inner tube diameter were presented. The experimental heat transfer coefficients were compared with the predictions using existing heat transfer coefficient correlations. A new boiling heat transfer coefficient correlation based on the superposition model, with considering the laminar flow, was developed.

  • PDF

Experimental Study on Heat Transfer Characteristics of Evaporation using Propylene Refrigerant (프로필렌 냉매의 증발열전달 특성에 관한 실험적 연구)

  • 이호생;김재돌;정석권;윤정인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.754-761
    • /
    • 2004
  • In this paper, evaporating heat transfer characteristics in the refrigeration and air-conditioning facilities were studied using the environmentally friendly refrigerants R-1270 (Propylene). R-290 (Propane). R-600a (Iso-butane) and HCFC refrigerant R-22 The test tube was surrounded by an annulus with water flowing counter to the refrigerant. The tube is copper. with an outside diameter of 12.7mm and the wall thickness of 1.315mm. The test results showed that the local evaporating heat transfer coefficients of hydrocarbon refrigerants were superior to that of R-22 and the maximum increasing rate of heat transfer coefficient was found in R-1270. The average evaporating heat transfer coefficient increased with the increase of the mass velocity and it showed the higher values in hydrocarbon refrigerants than R-22 Comparing the heat transfer coefficient of experimental results with that of other correlations. the presented results had agood agreement with the Kandlikar's correlation. This results form the investigation can be used in the design of heat transfer exchangers using hydrocarbons as the refrigerant for the air-conditioning systems.

Evaporating heat transfer characteristics of R-22 alternative hydrocarbon refrigerants at heat exchanger using grooved inner tube (내면 핀관을 사용하는 열교환기에서 R-22 대체 탄화수소계 냉매의 증발 열전달 특성)

  • 홍진우;박승준;노건상;구학근;오후규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.414-420
    • /
    • 2000
  • In this paper, evaporation heat transfer characteristics at a inner grooved tube were studied using a new natural refrigerants R-290, R-600a and HCFC refrigerant R-22. Experiments were performed in the inner tube with outside diameter of 12.70mm, having 75 fins with a fin height of 0.25mm. The following results were obtained from this research. On the evaporating heat transfer characteristics, the maximum increment of heat transfer coefficient was found in R-290. Average heat transfer coefficient was obtained the maximum value in R-290 and the minimum value in R-22. It reveals that the natural refrigerant can be used as a substitute for R-22. In the grooved inner tube, 70% of the increment of the heat transfer coefficient was obtained compared to the smooth tube. Comparing the heat transfer coefficient between experimental results and simulation data of other's, the Kandlikar's correlated equation was closely approximated to the author's experimental results in the smooth tube or grooved inner one.

  • PDF

Performance and heat transfer of an air conditioning system filled with hydrocarbon refrigerants (탄화수소 냉매를 사용한 냉방시스템의 성능 및 열전달 특성)

  • Jang, Yeong-Su;Kim, Min-Su;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.713-723
    • /
    • 1997
  • Performance and heat transfer characteristics of an air conditioning system filled with hydro- carbon refrigerants are experimentally investigated. Single component hydrocarbon refrigerants (propane, isobutane, butane and propylene) and binary mixtures of propane/isobutane and propane/butane are considered as working fluids in the air conditioning system. Performances of each refrigerant are obtained at several compressor speeds and temperature levels of secondary heat transfer fluids. The cooling capacity and the coefficient of performance are obtained as test results. Heat transfer data of selected refrigerants are achieved from overall conductance measurement. Average heat transfer coefficients at different mass fluxes are shown and they are also displayed for different heat capacities of the system. Experimental results show that some hydrocarbon refrigerants have better characteristics than R22.

Experimental Study on Heat Transfer Characteristics of Oil Cooler Inserted Offset Strip Fin (옵셋 스트립 휜 삽입 오일쿨러의 열전달에 관한 실험적 연구)

  • Yoo, Jung-Won;Park, Jae-Hong;Kwon, Yong-Ha;Kim, Young-Soo;Lee, Byung-Kil
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1237-1242
    • /
    • 2004
  • In this study, single-phase heat transfer experiments were conducted with oil cooler with offset strip fin using water. An experimental water loop has been developed to measure the single-phase heat transfer coefficient in a vertical oil cooler. Downflow of hot water in one channel receives heal from the cold water upflow of water in the other channel. Similar to the case of a plate heat exchanger, even at a very low Reynolds number, the flow in the on cooler with offset strip fin remains turbulent. The present data show that the heat transfer coefficient increases with the Reynolds number. Based. On the present data, empirical correlation of the heat transfer coefficient was proposed. Also, performance prediction analysis for oil cooler were executed and compared with experiments. ${\varepsilon}-NTU$ method was used in this prediction program. Independent variables are flow rates and inlet temperature. Compared with experimental data, the accuracy of the program is within the error bounds of ${\pm}5$% in the heat transfer rate.

  • PDF

Evaporative Heat Transfer Characteristics of Carbon Dioxide in a Horizontal Tube (수평관내 이산화탄소의 증발 열전달 특성)

  • Son Chang-Hyo;Lee Dong-Gun;Kim Young-Lyoul;Oh Hoo-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1134-1139
    • /
    • 2004
  • The evaporative heat transfer coefficient of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator (test section). The test section consists of a smooth, horizontal stainless steel tube of inner diameter of 7.75 mm. The experiments were conducted at mass flux of 200 to 500 kg/m$^2$s, saturation temperature of -5 to 5$^{\circ}C$, and heat flux of 10 to 40kW/m$^2$. The test results showed the heat transfer of $CO_2$ has a greater effect on nucleate boiling more than convective boiling. Mass flux of $CO_2$ does not affect nucleate boiling too much, and the effect of mass flux on evaporative heat transfer of $CO_2$ is much smaller than that of refrigerant R-22 and R-134a. In comparison with test results and existing correlations, correlations failed to predict the evaporative heat transfer coefficient of $CO_2$, therefore, it is necessary to develope reliable and accurate predictions determining the evaporative heat transfer coefficient of $CO_2$ in a horizontal tube.

A Study on the Effects of Fin Length on Natural Convection Heat Transfer from a Inclined Flat Plate (경사평판에서의 핀길이가 자연대류 열전달에 미치는 영향에 관한 연구)

  • 천대희
    • Fire Science and Engineering
    • /
    • v.12 no.1
    • /
    • pp.3-8
    • /
    • 1998
  • This study has been conducted experimentally on the effects of natural convection heat transfer characteristics for inclined flat plate with vertical fin in air. The effects of various fin length, flat plate inclined angle and Grashof number are mainly investigated The experimented results are as follows: The mean heat transfer coefficient increase according to the decrease of H/S in the various fin lengh. The mean heat transfer coefficient at H/S-0.5, 1.0, 1.5 for Gr=2.11$\times$103. $\theta$=00 increase by 107%, 43%, 15% than H/S=2.0. The mean heat transfer coefficient decrease with the increase of $\theta$ the inclined angles. The mean heat transfer coefficient at Gr=2.97$\times$103 is constant, at $\theta$= 00 for H/S=0.5 decrease by 33% than $\theta$=90$^{\circ}$. The mean heat transfer coefficient increase as Grashof as Grashof number increase. The mean heat transfer coefficient at Gr=2.31$\times$103, Gr=2.61$\times$103, Gr=2.97$\times$103 for H/S=1.0, $\theta$=0$^{\circ}$increase by 9%, 16%, 28% than Gr=2.11$\times$103.

  • PDF

A Study on Heat Transfer Characteristics in the Air Side of Louvered Fin Heat Exchanger (루우버핀형 열교환기의 공기측 열전달 특성에 관한 연구)

  • Kim, Sun-Jung
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.1
    • /
    • pp.9-16
    • /
    • 2003
  • For the study of an effect that fin thickness and shape of heat exchanger have on the elevation of heat transfer efficiency, we make models of plate fin type heat exchanger and louvered fin type heat exchanger which was given a transformation of fin thickness in plate f)n type heat exchanger and louvered fin type heat exchanger which are often used now. And the effect of fin thickness on pressure drop and characteristics of heat transfer was experimented and analysed when air velocity and temperature of plate heating was a variable. The results of experiment shows below. Pressure drop shows larger in louvered fin type exchanger than in plate fin type exchanger, size of pressure drop shows like this order that fin thickness is 0.3mm, 0.2mm, 0.1mm. Mean heat transfer coefficient shows higher in louvered fin type exchanger than in plate fin type exchanger, size of mean heat transfer coefficient by fin thickness shows same in both case in louvered fin type heat exchanger and plate fin type exchanger like this order that fin thickness is 0.1mm, 0.2mm, 0.3mm.