• Title/Summary/Keyword: heat coefficient

Search Result 2,569, Processing Time 0.03 seconds

Cooling Heat Transfer Characteristics of Carbon Dioxide in a Horizontal and Helically Coiled Tube (수평관과 헬리컬 코일관내 이산화탄소의 냉각 열전달 특성)

  • Son, Chang-Hyo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.121-126
    • /
    • 2008
  • The cooling heat transfer coefficient of $CO_2$ (R-744) in a horizontal and helically coiled tube was investigated experimentally. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater, evaporator and gas cooler (test section). The test section consists of a horizontal stainless steel tube and hellically coiled copper tube of 4.57 and 7.75 mm. The experiments were conducted at saturation temperature of 100 to $20^{\circ}C$, and mass flux of 200 to $500kg/m^2s$. The test results showed the variation of the heat transfer coefficient tended to decrease as cooling pressure of $CO_2$ increased. The heat transfer coefficient with respect to mass flux increased as mass flux increased. The experimental results were also compared with the existing correlations for the supercritical heat transfer coefficient, which generally underpredicted the measured data. However, the experimental data showed a relatively good agreement with the correlations of Pitla et al. except for the pseudo critical temperature.

An Efficient Fluid-Thermal Integrated Analysis for Air-Intake Structure Design of a High Speed Air Vehicle (고속 비행체 공기흡입관 구조설계를 위한 효율적 유체-열 통합해석 연구)

  • Chun, Hyung-Geun;Ryu, Dong-Guk;Lee, Jae-Woo;Kim, Sang-Ho
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.3
    • /
    • pp.8-17
    • /
    • 2015
  • In this research, low fidelity air/heat load analysis was conducted for the intake of high speed vehicle. For air/heat load calculations, aerodynamic properties at the surface and the boundary layer edge were estimated using Taylor-Maccoll equation for conical flow, shockwave relation and Prandtl-Meyer expansion equation for internal and external flow. Couette flow assumption and Reynolds analogy were used in order to calculate convective heat transfer coefficient. In order to calculate skin friction coefficient for heat transfer coefficient analysis, Van Driest method II and Reference Enthalpy method were considered. An axis symmetric SCRAMJET model was selected as a reference configuration for verifying the proper implementation of the present method. Comparison of the results using the present method and Computational Fluid Dynamic analysis showed that the present method is valuable for efficiently providing pressure and heat loads for air-intake structure design of the high speed air vehicle.

An Experimental study on Heat Characteristics of Horizontal Tubes with Fin in Fluidized Bed Combustor (유동층 연소로 내에서 수평 휜 전열관의 열전달 특성에 관한 실험적 연구)

  • Kang, Hyung-Soo;Chung, Tae-Yong
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.19-29
    • /
    • 1996
  • This study is to investigate the characteristics of heat transfer of a horizontal tube, with radial fins of various configuration, immersed in a high temperature fluidized bed. The experimental heat transfer variation is compared with that of a smooth tube. The finned tubes and smooth tube, with outside and inside diameter of 48.6mm and 30.6mm, are made of steel tubes. The depth of the fin is 5mm, the rake angles of fin are $25^{\circ},\;35^{\circ},\;45^{\circ}$ and the widthes of fin for each rake angle are 0mm, 1mm, 2mm and 3mm. A bed temperature is fixed at $880\;{\pm}\;10^{\circ}C$. A granular refractory(silica sand) is used as a bed material with mean particle diameters of 1.22mm and 1.54mm. The maximum heat transfer coefficient is achieved with the rake angle of $25^{\circ}$ and the width of 0mm for the mean particle size 1.22mm. The coefficient is 2.14 times larger than that for a smooth tube. The rake angle for the maximum heat transfer coefficient depends on the particle size of bed material. Also the transfer coefficient decreases as the width of fin increases.

  • PDF

Comparison Between Two Solar Absorption Cooling System Using Single Effect and Single Effect/Double Lift Cycle (일중효용 사이클과 일중효용/2단승온 사이클을 이용한 태양열 흡수식 냉방시스템의 비교)

  • 정시영;이상수;조광운;백남춘
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.267-276
    • /
    • 2000
  • A numerical study has been carried out to find out the optimal design condition of a solar absorption cooling system. The system was composed of solar collectors and an absorption chiller with LiBr/water The System performance with commercial single effect(SE) cycle and a new single effect/double lift(SE/DL) cycle utilizing low temperature hot water was calculated and compared. It was found that the required solar collector area grew exponentially as the overall heat loss coefficient of solar collectors increased. For instance, the required area for cooling capacity of 1 USRT was $17m^2$ if heat loss coefficient was 4 W/$m^2\;cdot\;K$. If heat loss coefficient was doubled($8\;W/m^2\;cdot\;$K), the required collector area was increased by 6 times($100m^2$) .It was also found that the SE-cycle as the heat loss coefficient of solar collectors increased. Generally, a SE/DL-cycle seems to be more advantageous than a SE-cycle if loss coefficient of solar collector is greater than 4 W/$m^2\;cdot\;K$.

  • PDF

A Study on the Thermal Stress Analysis of a Piston in a Turbocharged Diesel Engine (터보 디젤엔진 피스톤의 열응력 해석에 관한 연구)

  • 국종영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.92-98
    • /
    • 2001
  • We determined the transfer coefficient through the analysis of three dimensional temperature distribution in comparison with the measured temperature on the piston in the turbocharged diesel engine. And we analyzed the thermal stress and the thermal deformation with that heat transfer coefficient by using finite element method. According to this results, we found that maximum tempetature range of the piston appeared at the upper part of the piston crown and that the heat transfer coefficient of the upper part of the piston is smaller than that of the lower one. It showed that the maximum thermal deformation is shown at the edge of the upper part of piston and that the maximum thermal stress was shown on the lower part of the piston crown. Finally, we defined the method of determination of a piston heat transfer analysis by using measured temperature on the piston and analyzed temperature with finite element method.

  • PDF

Effect of Diameter and Length on the Absorption Performance in a Vertical Absorber Tube (수직형 흡수기 성능에 미치는 흡수기 전열관의 직경과 길이의 영향)

  • 서정훈;조금남
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1214-1222
    • /
    • 2001
  • The present study investigated the effect of diameter and length on the absorption performance of a vertical falling film type absorber using $LiBr-H_2$O solution of 60 wt%. The parameters were diameter of absorber (17.2, 23.4, 31.1 mm), length of absorber (771, 1150, 1528 mm), and film Reynolds numbers (50, 70, 90, 110, 130, 150). As the diameter of the absorber was increased, the absorption mass flux, Sherwood number, heat flux, and heat transfer coefficient were increased, in which Sherwood number and heat transfer coefficient were increased up to 13% and 30% respectively. As the length of the absorber was increased, the total absorption rate and heat transfer coefficient were increased by 37% and 35% respectively, while the absorption mass flux was decreased.

  • PDF

Study on Single-Phase Heat Transfer, Pressure Drop Characteristics and Performance Prediction Program in the Oblong Shell and Plate Heat Exchanger (Oblong 셀 앤 플레이트 열교환기에서의 단상 열전달, 압력강하 특성 및 성능예측 프로그램 개발에 관한 연구)

  • 권용하;김영수;박재홍
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.1026-1036
    • /
    • 2004
  • In this study, single-phase heat transfer experiments were conducted with Oblong Shell and Plate heat exchanger using water. An experimental water loop has been developed to measure the single-phase heat transfer coefficient and pressure drop in a vertical Oblong Shell and Plate heat exchanger. Downflow of hot water in one channel receives heat from the cold water upflow of water in the other channel. Similar to the case of a plate heat exchanger, even at a very low Reynolds number, the flow in the Oblong Shell and Plate heat exchanger remains turbulent. The present data show that the heat transfer coefficient and pressure drop increase with the Reynolds number. Based on the present data, empirical correlations of the heat transfer coefficient and pressure drop in terms of Nusselt number and friction factor were proposed. Also, performance prediction analyses for Oblong Shell and Plate heat exchanger were executed and compared with experiments. $\varepsilon$-NTU method was used in this prediction program. Independent variables are flow rates and inlet temperatures. Compared with experimental data, the accuracy of the program is within the error bounds of $\pm$5% in the heat transfer rate.

A Development of Heat Exchanger by using Small Bore Two-Port Tube (연결세경관을 이용한 열교환기의 개발)

  • Lee, Sangmu;Park, Byung-Duck
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.2
    • /
    • pp.63-68
    • /
    • 2015
  • The fin and tube type heat exchangers widely used in air conditioners have been developed to improve on the heat transfer performance and compactness. This study presents the new type of tube for the heat exchanger to improve the heat transfer performance by increasing the heat transfer area per unit volume in the air-conditioner heat exchanger. The new type tube can be used for mechanical expansion facility, due to the two-port copper tube. Numerical calculation shows that the heat exchanger using the two-port copper tube outperforms the conventional heat-exchanger using a circular copper tube, in terms of the increased heat transfer coefficient and higher pressure drop. The calculation results were experimentally validated and are in agreement with the experimental results. Compared to the heat exchanger using a conventional circular tube, the heat exchanger with a two-port tube increased the heat transfer coefficient up to 21%, and the pressure dropped up to 16%.

Heat Transfer Characteristics of Fin-Tube Heat Exchanger Coated with FAPO Zeolite Adsorbent at Different Operating Conditions (FAPO 제올라이트 흡착제 코팅을 통한 핀-관 열교환기 운전조건별 열전달 성능특성)

  • Jeong, Chul-Ki;Kim, Yong-Chan;Bae, Kyung-Jin;Cha, Dong-An;Kwon, Oh-Kyung
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.93-101
    • /
    • 2017
  • In conventional adsorption chamber, adsorbent is embedded in between heat exchanger fins by wire mesh. This method impedes heat and mass transfer efficiency. So in this study, to improve the heat transfer performance of heat exchanger, a fin-tube exchanger was coated with FAPO (Ferroaluminophosphate) zeolite adsorbent. The fin-tube heat exchanger has a fin pitch of 1.8 mm with a variation of adsorbent coating thickness of about 0.1 mm, 0.15 mm and 0.2 mm. By varying cooling water temperature and chilled water temperature respecively, heat transfer rate and overall heat transfer coefficient were investigated. As a result, the heat transfer rate and overall heat transfer coefficient increase with decreasing cooling water temperature and increasing chilled water temperature. Under the basic conditions, the heat transfer rate of heat exchanger with 0.2 mm coating thickness is 11% and 43% higher than that of 0.1 mm and 0.15 mm, respectively. The overall heat transfer coefficient is $189.1W/m^2{\cdot}^{\circ}C$, it is two times lager than that of 0.1 mm.

Heat and Mass Transfer Characteristics of LiCl Aqueous Solution for a Plate Heat Exchanger Type Dehumidifier (판형 열교환기식 제습기에서 LiCl 수용액의 열 및 물질전달 특성)

  • Jeon, Dong-Soon;Lee, Hae-Seung;Kim, Seon-Chang;Kim, Young-Lyoul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.1
    • /
    • pp.16-22
    • /
    • 2012
  • Experimental investigations were carried out to examine the heat and mass transfer characteristics of LiCl aqueous solution for a plate heat exchanger type dehumidifier. Cooling dehumidification was adopted vertical type heat exchanger. Also non woven fabric is attached surface of the heat exchanger for spreadability of LiCl aqueous solution. Mass flow-rate of LiCl aqueous solution and concentration were selected as experimental conditions. Also, In this study, the effects of relative humidity of process air and velocity were investigated experimentally. As a result of heat transfer coefficient and mass transfer coefficient of were increased film reynolds number increased. heat transfer coefficient and mass transfer coefficient of LiCl aqueous solution were 0.14~0.24 kW/$m2^{\circ}C$ and $1.3{\times}10-63{\sim}6.2{\times}10-6$ m/s respectively.