• Title/Summary/Keyword: heat cable curing

Search Result 9, Processing Time 0.031 seconds

EFFECT OF HEAT CURING METHODS ON THE TEMPERATURE HISTORY AND STRENGTH DEVELOPMENT OF SLAB CONCRETE FOR NUCLEAR POWER PLANT STRUCTURES IN COLD CLIMATES

  • Lee, Gun-Che;Han, Min-Cheol;Baek, Dae-Hyun;Koh, Kyung-Taek
    • Nuclear Engineering and Technology
    • /
    • v.44 no.5
    • /
    • pp.523-534
    • /
    • 2012
  • The objective of this study was to experimentally investigate the effect of heat curing methods on the temperature history and strength development of slab concrete exposed to $-10^{\circ}C$. The goal was to determine proper heat curing methods for the protection of nuclear power plant structures against early-age frost damage under adverse (cold) conditions. Two types of methods were studied: heat insulation alone and in combination with a heating cable. For heat curing with heat insulation alone, either sawdust or a double layer bubble sheet (2-BS) was applied. For curing with a combination of heat insulation and a heating cable, an embedded heating cable was used with either a sawdust cover, a 2-BS cover, or a quadruple layer bubble sheet (4-BS) cover. Seven different slab specimens with dimensions of $1200{\times}600{\times}200$ mm and a design strength of 27 MPa were fabricated and cured at $-10^{\circ}C$ for 7 d. The application of sawdust and 2-BS allowed the concrete temperature to fall below $0^{\circ}C$ within 40 h after exposure to $-10^{\circ}C$, and then, the temperature dropped to $-10^{\circ}C$ and remained there for 7 d owing to insufficient thermal resistance. However, the combination of a heating cable plus sawdust or 2-BS maintained the concrete temperature around $5^{\circ}C$ for 7 d. Moreover, the combination of the heating cable and 4-BS maintained the concrete temperature around $10^{\circ}C$ for 7 d. This was due to the continuous heat supply from the heating cable and the prevention of heat loss by the 4-BS. For maturity development, which is an index of early-age frost damage, the application of heat insulation materials alone did not allow the concrete to meet the minimum maturity required to protect against early-age frost damage after 7 d, owing to poor thermal resistance. However, the combination of the heating cable and the heat insulating materials allowed the concrete to attain the minimum maturity level after just 3 d. In the case of strength development, the heat insulation materials alone were insufficient to achieve the minimum 7-d strength required to prevent early-age frost damage. However, the combination of a heating cable and heat insulating materials met both the minimum 7-d strength and the 28-d design strength owing to the heat supply and thermal resistance. Therefore, it is believed that by combining a heating cable and 4-BS, concrete exposed to $-10^{\circ}C$ can be effectively protected from early-age frost damage and can attain the required 28-d compressive strength.

Optimum Curing and Full-out Velocity in the Rubber Extrusion Process for Electric Cable Manufacture (전선피복용 고무압출가공 공정의 최적 경화 및 선출 속도)

  • Kim, Duk-Joon;Choi, Sang-Soon;Kim, Tae-Ho
    • Elastomers and Composites
    • /
    • v.33 no.2
    • /
    • pp.93-102
    • /
    • 1998
  • In electric cable industries, the curing extent of the rubber materials covering the electric cores gives an significant effect on their final performance. The curing extent of rubber is controlled mostly by pull-out velocity of cable in the extrusion process. The final curing extent may be different for different radial positions inside the rubber because of the non-uniform temperature distributions during the curing process. In this contribution, the prediction of curing extent distribution throughout the radial direction of rubber is represented when the cable is passing through the steam curing zone with a fixed pull-out velocity. The prediction of the optimum pull-out velocity for the desired curing extent distribution is also reported. The steady-state heat balance was developed for the curing and cooling processes in which the pull-out rubber was cured by high temperature steam and then cooled by ambient water. A few essential material properties such as density, specific heat, and thermal conductivity were measured to analyze the temperature distribution during the curing and cooling processes. The times to reach 90% curing extent at varying temperatures were measured and used to determine the final cure extent distribution inside the rubber.

  • PDF

Temperature History of the Wall Concrete Subjected to -10℃ depending on Heat Curing Method (-10℃ 조건에서의 보온양생방법 변화에 따른 벽체 콘크리트의 온도이력)

  • Han, Sang-Yoon;Son, Ho-Jung;Cheong, Sang-Hyun;Ahn, Sang-Ku;Han, Cheon-Goo;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.255-256
    • /
    • 2011
  • This study investigates the effect of a curing condition on the temperature history and strength development of concrete under -10℃. Combination of various curing methods was applied, i.e. a conventional form was combined with compressed insulation, heat panel and heat cable. Results showed that the concrete cured by a single use of a conventional form resulted in serious deterioration of early strength development. However, other concretes cured by the proposed curing methods maintained the temperature of the concretes between 5 and 20℃, and thus resulted in no frost damage.

  • PDF

A theoretical investigation on the temperature distribution of XLPE insulated cable for HV during curing prcess (고압 XLPE 절연 케이블의 가교공정중의 온도분포 계산에 대한 이론적 고찰)

  • Kang, T.O.;Kim, K.S.;Cheon, C.O.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1229-1231
    • /
    • 1995
  • XLPE cable, which has excellent electrical and thermal performance, has been widely used for HV transmission & distribution lines. The most important thing to produce the cable products having good performance is to set the optimal operating conditions of cable machinery. Because it is very difficult to measure the temperature of cable under curing process practically, it is necessary to evaluate the cable temperature by using the method to simulate real conditions numerically. In this work, We investigate the basic theory on transient heat transfer between curing tube and cable for making a numerical simulation program using computer. In this program, a differential equation is approximated by a infinite differential method and a few assumptions are used to simplify the model and minimize the calculation time of program.

  • PDF

The Effect of Heat Curing Methods on the Protection against Frost Damage at Early Age of the Concrete Under Extremely Cold Climate

  • Jung, Eun-Bong;Shin, Hyun-Sup;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.6
    • /
    • pp.513-521
    • /
    • 2013
  • This study aimed to examine whether heat curing methods of concrete subjected to $-10^{\circ}C$ could be effective by varying the combination of heating cable and surface heat insulations. Three different concrete specimens incorporating 30% fly ash with 50% W/B were fabricated to simulate wall, column and slab members with dimensions of $1600{\times}800{\times}200$ mm for slab, $800{\times}600{\times}200$ mm for wall and $800{\times}800{\times}800$ mm for column. For heat curing combinations, Type-1 specimens applied PE film for slab, plywood for wall and column curing. Type-2 specimens applied double layer bubble sheet (2LB) and heating coil for slab, and 50 mm styrofoam for wall and column curing. Type-3 specimen applied 2LB for slab, electrical heating mat for wall and column inside heating enclosure. The test results revealed that the temperature of Type 1 specimen dropped below $0^{\circ}C$ beginning at 48 hours after placement due to its poor heat insulating capability. Type 2 and 3 specimens maintained a temperature of around $5{\sim}10^{\circ}C$ after placement due to favorable heat insulating and thermal resistance.

Temperature History of Wall Concrete with Heat Insulating Curing Method Subjected to Severly Cold Climate (혹한온도 조건에서의 양생방법 변화에 따른 벽체 콘크리트의 온도이력 특성)

  • Son, Ho-Jung;Han, Sang-Yoon;Cheong, Sang-Hyeon;Ahn, Samg-Ku;Han, Cheon-Goo;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.51-52
    • /
    • 2011
  • This study is to propose a curing method for a concrete wall structure under severe cold climate. The curing methods of using heated cable, heated panel and insulated form were applied. Results showed that the concrete cured by the heated cable resulted in the highest temperature history and the highest strength development at 28 days. Further, it is believed that the curing methods of the heated panel and insulated form are also recommendable for the resistance of the early frost damage on the concrete in practice.

  • PDF

Strength Development of Mock-up Concrete Structure subjected to Extremely Low Temperature Condition Due to Curing Methods (극저온 조건에서의 양생방법 변화에 따른 실구조체 콘크리트의 강도발현 특성)

  • Jung, Eun-Bong;Jung, Sang-Hyeon;Ahn, Sang-Ku;Ko, Gyeong-Taek;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.47-49
    • /
    • 2012
  • Under this study, the characteristics of concrete intensity condition following the curing method under the extremely low temperature environment have been contemplated, and as a result, in the event of insulation + heat cable curing, the intensity and accumulated temperature accomplishment period is required for two times of requiring initial frost damage prevention than the case of heating + heat insulation curing method due to the insufficient calories supplied in general.

  • PDF

Prevention of Early Frost Damage of the Concrete under Severely Low Temperature according to Heat Curingmethods (극저온 조건에서 보온양생 방법 변화에 따른 콘크리트의 초기동해 방지)

  • Han, min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.67-76
    • /
    • 2016
  • Concrete exposed to severely low temperature below $-20^{\circ}C$ should be provided with proper heat supplying curing to protect the concrete from early frost damage at the time of pouring.meanwhile, so far, effective heat curingmethods of the concrete under severely low temperature are not well established in Korea. For this reason, the objective of this paper is to provide effective heat curingmethod of concrete exposed to severely low temperature to protect early frost damage by varying the combination of heat curingmaterial combinations. Temperature history,maturity development and core strength results are investigated. Fourmock-up specimens simulating slab, wall and column were prepared and heat insulation, heat supplying and both were applied. Test results indicate that the combination of quadruple layer bubble sheet(4BS) and embedding of heating cable has desirable performance for a slab, and heat supplying curing inside heat enclosure and heat generationmat also shows desirable performance for a wall, and for a column, use of EPS heat insulation has proper performance against early frost damage, which reaches $45^{\circ}D{\cdot}D$ and helps the concretemaintain above $0^{\circ}C$ within 3 days. Themethodsmentioned above are believed to be optimum protection from early frost damage of the concrete under $-20^{\circ}C$.

Characteristics of Temperature History of Slab concrete by the Change of Hot wire Heat Capacity at -10℃ (-10℃ 조건에서의 열선 열용량 크기 변화에 따른 슬래브 콘크리트의 온도이력 특성)

  • Jung, Eun-Bong;Ahn, Sang-Ku;Jung, Sang-Hyun;Koh, Kyung-Taek;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.75-77
    • /
    • 2013
  • In this study, the characteristics of temperature history was evaluated for three hot wires with different capacity installed in slab concrete which are relatively thin. Results can be summarized as follows. First, for the case of material using 5W hot wire, all decreased to below zero at or around 24 hours. Similarly, the material using 20W hot wire decreased to 2℃ below zero at or around 80 hours but satisfied the accumulative temperature of 45° D·D at 7 days of material age. On the other hand, the case of 30W hot wire, the biggest capacity, showed the high temperature history of 5℃ in average at all areas except the corners. Thus, the target accumulative temperature was secured at or around the 3 days of material age. Considering the above, the initial damage by freezing can be prevented only if 20W or higher hot wires are used for the slabs at -10℃ of extremely low temperature environment.

  • PDF