• Title/Summary/Keyword: heat and mass transfer

Search Result 1,287, Processing Time 0.025 seconds

A Study on the Fin Efficiency of Continuous Fin with Combined Heat and Mass Transfer (열과 물질 전달을 수반하는 연속휜의 휜효율에 관한 연구)

  • 정세환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.445-450
    • /
    • 1998
  • In the present paper the effects of combined heat and mass transfer on the fin efficiency were calculated. Sector method was used for calculating the fin efficiency of the continuous fin. The parameter Lewis No. and C which describe the combined heat and mass transfer is derived by using the heat and mass transfer analogy and effects of Lewis No. and C on the fin efficiencies were calculated.

  • PDF

Characteristics of Heat and Mass Transfer for a Falling Film Type Absorber with Insert Spring Tubes (스프링삽입형 유하액막식 흡수기의 열 및 물질전달 특성)

  • 윤정인;오후규;백목효부
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1501-1509
    • /
    • 1995
  • It is known that the heat and mass transfer characteristics in the absorber are most sensitive of the temperature boost of all the heat exchangers and the development of a more efficient absorber should be highly important. This paper describes absorption experiments made with different inside tube diameters, tube length and tube shapes. The purpose of this study is to acquire basic knowledge about heat and mass transfer in a falling film type absorber with vertical inner tubes. Heat and mass transfer were measured for water vapor absorption into a Lithium Bromide-water solution flowing down an absorber of vertical inner tubes. As a result, insert spring tube compares bare tube and heat transfer improved by order of insert spring tube P2(pitch 20 mm) and P1(pitch 10 mm).

Analysis of heat and mass transfer in a vertical tube absorber cooled by air (공랭형 수직원관 흡수기에서의 열 및 물질전달 해석)

  • Kim, Seon-Chang;O, Myeong-Do;Lee, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3293-3303
    • /
    • 1996
  • Numerical analyses have been performed to estimate the absorption heat and mass transfer coefficients in absorption process of the LiBr aqueous solution and the total heat and mass transfer rates in a vertical tube absorber which is coolING ed by air. Axisymmetric cylindrical coordinate system was adopted to model the circular tube and the transport equations were solved by the finite volume method. Absorption behaviors of heat and mass transfer were analyzed through falling film of the LiBr aqueous solution contacted by water vapor in tube. Effects of film Reynolds number on heat and mass transfer coefficients have been also investigated. Especially, effects of tube diameter have been considered to observe the total heat and mass transfer rates through falling film along the tube. Based on the analysis it has been found that the total mass transfer rate increases rapidly in a region with low film Reynolds number(10 ~ 40) as the film Reynolds number increases, while decreases beyond that region. The total heat and mass transfer rates increase with increasing the tube diameter.

Effects of Discrete Rib-Turbulators on Heat/Mass Transfer Augmentation in a Rectangular Duct (사각 덕트 내부 열전달 향상을 위한 요철의 단락 효과)

  • Kwon, Hyuk-Jin;Wu, Seong-Je;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.744-752
    • /
    • 2000
  • The influence of arrangement and length of discrete ribs on heat/mass transfer and friction loss is investigated. Mass transfer experiments are conducted to obtain the detailed local heat/mass transfer information on the ribbed wall. The aspect ratio (width/height) of the duct is 2.04 and the rib height is one tenth of the duct height, such that the ratio of the rib height to hydraulic diameter is 0.0743. The ratio of rib-to-rib distance to rib height is 10. The discrete ribs were made by dividing each continuous rib into 2, 3 or 5 pieces and attached periodically to the top and the bottom walls of the duct with a parallel orientation The combined effects of rib angle and length of the discrete ribs on heat/mass transfer ae considered for the rib angles $({\alpha})\;of\;90^{\circ}\;and\;45^{\circ}$. As the number of the discrete ribs increases, the uniformity of the heat/mass transfer distributions increases. For $(\alpha})=90^{\circ}$, the heat/mass transfer enhancement with the discrete ribs is remarkable, while the heat/mass transfer performances are slightly higher than that of the transverse continuous ribs due to the accompanied high friction loss penalty. For $(\alpha})=90^{\circ}$, the average heat/mass transfer coefficients and the heat/mass transfer performances decrease slightly with the discrete ribs compared to the case of the angled continuous ribs.

Heat/Mass Transfer and Friction Characteristic in a Square Duct with Various Discrete Ribs -In-Lined Gap Arrangement Ribs- (덕트내 요철의 단락위치 변화에 따른 열/물질전달 및 압력강하 특성 - 정렬 단락배열 요철 -)

  • Lee, Sei-Young;Choi, Chung;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1640-1649
    • /
    • 2001
  • The present study investigates the effects of various rib arrangements on heat/mass transfer in the cooling passage of gas turbine blades. A complex flow structure occurs in the cooling passage with rib turbulators which promote heat transfer on the wall. It is important to increase not only the heat transfer rates but also the uniformity of heat transfer in the cooling passage. A numerical computation is performed using a commercial code to calculate the flow structures and experiments are conducted to measure heat/mass transfer coefficients using a naphthalene sublimation technique. A square channel (50 mm $\times$ 50 mm) with rectangular ribs (4 mm $\times$ 5 mm) is used fur the stationary duct test. The experiments focus on the effects of rib arrangements and gap positions in the discrete ribs on the heat/mass transfer on the duct wall. The rib angle of attack is 60°and the rib-to-rib pitch is 32 mm, that is 8 times of the rib height. With the inclined rib angle of attack (60°), the parallel rib arrangements make a pair of counter rotating secondary flows in the cross section, but the cross rib arrangements make a single large secondary flow including a small secondary vortex. These secondary flow patterns affect significantly the heat/mass transfer on the ribbed wall. The heat/mass transfer in the parallel arrangements is 1.5 ∼2 times higher than that in the cross arrangements. However, the shifted rib arrangements change little the heat/mass transfer from the inline rib arrangements. The gap position in the discrete rib affects significantly the heat/mass transfer because a strong flow acceleration occurs locally through the gap.

Experimental Study of Reynolds Number Effects on Heat/Mass Transfer and Pressure Drop Characteristics in a Rotating Smooth Duct (매끈한 벽면을 가진 회전덕트 내 레이놀즈 수에 따른 열/물질전달 및 압력강하 특성 연구)

  • Kim, Kyung-Min;Park, Suk-Hwan;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.11
    • /
    • pp.888-895
    • /
    • 2006
  • The present study has been conducted to investigate the effects of Reynolds number on heat/mass transfer and pressure drop characteristics in a rotating smooth two-pass duct. For stationary cases, the heat/mass transfer and pressure drop Is decreased on turning region of both leading and trailing surfaces as Reynolds number increases. For rotating cases, increment of Reynolds number affects differently the heat/mass transfer and pressure drop on the leading and trailing surfaces. In the first pass, for example, the heat/mass transfer on the leading surface is greatly increased, though the heat/mass transfer on the trailing surface is almost the same. The reason is that effect of the main flow is more dominant than effect of secondary flow. In particular, it gave decrement of the heat/mass transfer and the pressure drop at turning region and upstream region of second pass for both non-rotating and rotating cases.

Flow and Heat/Mass Transfer Characteristics of Arrays of Impingement Jets with Effusion Holes (유출홀이 설치된 배열 충돌제트의 유동 및 열전달 특성)

  • Lee, Dong-Ho;Yun, Pil-Hyeon;Jo, Hyeong-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1606-1615
    • /
    • 2001
  • The present study has been conducted to investigate heat/mass transfer characteristics on a target plate fur arrays of circular impingement jets with and without effusion holes. A naphthalene sublimation method is employed to determine local heat/mass transfer coefficients on the target plate. The effusion holes are located at the center of four injection holes in the injection plate where the spent air is discharged through the effusion hole after impingement on the target plate. For the array jet impingement without effusion holes, the array jets are injected into the crossflow formed by upstream spent air because the impinged jets must flow to the open exit. For small gap distances, heat/mass transfer coefficients without effusion holes are very non-uniform due to crossflow effects and re-entrainments of spent air. However, uniform distributions and enhanced values of heat/mass transfer coefficients are obtained by installing the effusion holes. For large gap distances, the crossflow has little influence on heat/mass transfer characteristics on the target palate due to the large cross-sectional open area between the injection and target plates. Therefore, the distributions and levels of heat/mass transfer coefficients are almost the same for both cases.

Evaporation heat transfer and Pressure loss in micro-fin tubes and a smooth tube (마이크로핀관과 평활관에서의 증발열전달과 압력손실 특성)

  • 장세환;정시영;홍영기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.215-223
    • /
    • 1999
  • Evaporation heat transfer coefficient and pressure loss were measured for three different micro-fin tubes and a smooth tube. The experiments were carried out with R-22 over a wide range of vapor Quality, mass velocity and heat flux. Heat transfer coefficient of the tube with slightly modified fin shape was found to be higher than that of the commercial reference tube by 60%. The improvement of heat transfer has been achieved without noticeable increase of pressure loss. Heat transfer coefficient was increased with increasing quality, refrigerant mass flux, and heat flux. However, the effect of refrigerant mass flux and heat flux was not great. Heat transfer coefficient at bottom was lower than that at top of the tube in low quality region, which suggested the existence of stratification in the micro-fin tube. Pressure drop was linearly increased with increasing refrigerant quality and was proportional to about square of mass flux.

  • PDF

Numerical Study on Simultaneous Heat and Mass Transfer in a Falling Film of Water-Cooled Vertical Plate Absorber (수냉식 수직평판 흡수기의 액막 열 및 물질전달에 관한 수치적 연구)

  • Thanh-Tong Phan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.593-602
    • /
    • 2004
  • This paper is a study on the model of simultaneous heat and mass transfer process in the absorption of refrigerant vapor into a lithium bromide solution of water-cooled vertical plate absorber. The model can predict temperature and concentration profiles as well as the effect of Reynolds number on them. Also. the variations of the absorption heat and mass fluxes. and the heat and mass transfer coefficients have been investigated. The numerical result shows that the interface temperature and concentration decrease as film Reynolds number does. The absorption heat and mass fluxes, and the heat and mass transfer coefficients get their maximum values adjacent to the inlet solution. Analyses on a constant wall temperature condition have been also carried out to exam the reliability of the present numerical method by comparing to previous investigations.

Effects of Reynolds Number on Flow and Heat/Mass Characteristics Inside the Wavy Duct (Reynolds 수에 따른 꺾어진 덕트에서 열/물질전달 특성 고찰)

  • 장인혁;황상동;조형희
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.809-820
    • /
    • 2003
  • The present study investigates effects of flow velocity on the convective heat/mass transfer characteristics in wavy ducts of a primary surface heat exchanger application. Local heat/mass transfer coefficients on the wavy duct sidewall are determined by using a naphthalene sublimation technique. The flow visualization technique is used to understand the overall flow structures inside the duct. The aspect ratio and corrugation angle of the wavy duct is fixed at 7.3 and 145$^{\circ}$ respectively, and the Reynolds numbers, based on the duct hydraulic diameter, vary from 100 to 5,000. The results show that there exist complex secondary flows and transfer processes resulting in non-uniform distributions of the heat/mass transfer coefficients on the duct side walls. At low Re (Re<1000), relatively high heat/mass transfer regions like cell shape appear on both pressure and suction side wall due to the secondary vortex flows called Taylor-Gortler vortices perpendicular to the main flow direction. However, at high Re (Re>1000), these secondary flow cells disappear and boundary layer type flow characteristics are observed on pressure side wall and high heat/mass transfer region by the flow reattachment appears on the suction side wall. The average heat/mass transfer coefficients are higher than those of the smooth circular duct due to the secondary flows inside wavy duct. And also friction factors are about two times greater than those of the smooth circular duct.