• Title/Summary/Keyword: heart rate monitoring

Search Result 195, Processing Time 0.024 seconds

Development of Mobile Healthcare System Using ECG Measurement (심전도 측정을 이용한 모바일 헬스케어 시스템 개발)

  • Kim, Seong-Woo;Shin, Seung-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.2008-2016
    • /
    • 2014
  • With the increased attention about health care and management of heart diseases, ubiquitous healthcare services and related devices have been actively developed recently. In this paper we developed a mobile healthcare system which consists of smartphone and patch-type ECG measuring device. This system is capable of monitoring, storing, and sending bio signals such as ECG, heart rate, heart rate variability as well as exercise management functions through heart rate zones. With monitoring bio signal continuously by mobile healthcare system and wearable device like us, people can prevent chronic disease and maintain good health. Here we report our implementation results on real platforms.

A Study on the Development of Patient Monitoring System (환자 감시장치의 국산화 개발에 관한 연구)

  • 홍승홍;김재현
    • Journal of Biomedical Engineering Research
    • /
    • v.2 no.2
    • /
    • pp.117-126
    • /
    • 1981
  • Patient monitoring system, which is one of widly used medical electronic equipment in clinics, is developed. This prototype bedside monitor is considered that can measure electrocardiograph, photoplethysmograph, heart rate, respiratory, body temperature, and etc. Some clinical tests are performed and considered with its usefulness for patient monitoring items.

  • PDF

Development and Verification of the System for Heart Rate Detection During Exercise (운동 중 심박수 검출 시스템 개발 및 검증)

  • Jeon, Young-Ju;Shin, Seung-Chul;Jang, Yong-Won;Kim, Seung-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1688-1693
    • /
    • 2007
  • The aim of this paper is to develop and verify the system which can detect heart rate during exercise by using conductive fabric electrode and transportable measurement module. The experiment was performed under 4 conditions(resting, walking, jogging, running) and 18 subjects data are used. By using the ECG measurement system used in cardiac stress testing as reference value in order to verify the accuracy of the developed system, the relative error and correlation coefficient was calculated for each subject at every 3 seconds. The results have shown that the high correlation between the developed system and the reference system for detecting heart rate during exercise. Relative error and correlation coefficient are 2.27% and 0.9877, respectively. 7 subjects data are omitted in these calculations because of severe noises. Therefore, it is expected that this system could be used as a health monitoring system in ubiquitous environment in the future.

Association Between Leisure Time Physical Activity, Cardiopulmonary Fitness, Cardiovascular Risk Factors, and Cardiovascular Workload at Work in Firefighters

  • Yu, Clare C.W.;Au, Chun T.;Lee, Frank Y.F.;So, Raymond C.H.;Wong, John P.S.;Mak, Gary Y.K.;Chien, Eric P.;McManus, Alison M.
    • Safety and Health at Work
    • /
    • v.6 no.3
    • /
    • pp.192-199
    • /
    • 2015
  • Background: Overweight, obesity, and cardiovascular disease risk factors are prevalent among firefighters in some developed countries. It is unclear whether physical activity and cardiopulmonary fitness reduce cardiovascular disease risk and the cardiovascular workload at work in firefighters. The present study investigated the relationship between leisure-time physical activity, cardiopulmonary fitness, cardiovascular disease risk factors, and cardiovascular workload at work in firefighters in Hong Kong. Methods: Male firefighters (n = 387) were randomly selected from serving firefighters in Hong Kong (n = 5,370) for the assessment of cardiovascular disease risk factors (obesity, hypertension, diabetes mellitus, dyslipidemia, smoking, known cardiovascular diseases). One-third (Target Group) were randomly selected for the assessment of off-duty leisure-time physical activity using the short version of the International Physical Activity Questionnaire. Maximal oxygen uptake was assessed, as well as cardiovascular workload using heart rate monitoring for each firefighter for four "normal" 24-hour working shifts and during real-situation simulated scenarios. Results: Overall, 33.9% of the firefighters had at least two cardiovascular disease risk factors. In the Target Group, firefighters who had higher leisure-time physical activity had a lower resting heart rate and a lower average working heart rate, and spent a smaller proportion of time working at a moderate-intensity cardiovascular workload. Firefighters who had moderate aerobic fitness and high leisure-time physical activity had a lower peak working heart rate during the mountain rescue scenario compared with firefighters who had low leisure-time physical activities. Conclusion: Leisure-time physical activity conferred significant benefits during job tasks of moderate cardiovascular workload in firefighters in Hong Kong.

Characteristics of Heart Rate Variability Derived from ECG during the Driver's Wake and Sleep States (운전자 졸음 및 각성 상태 시 ECG신호 처리를 통한 심장박동 신호 특성)

  • Kim, Min Soo;Kim, Yoon Nyun;Heo, Yun Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.136-142
    • /
    • 2014
  • Distinct features in heart rate signals during the driver's wake and sleep states could provide an initiative for the development of a safe driving systems such as drowsiness detecting sensor in a smart wheel. We measured ECG from health subjects ($23.5{\pm}2.5$ in age) during the wake and drowsiness states. The proposed method is able to detect R waves and R-R interval calculation in the ECG even when the signal includes in abnormal signals. Heart rate variability(HRV) was investigated for the time domain and frequency domains. The STD HR(0.029), NN50(0.044) and VLF power(0.0018) of the RR interval series of the subjects were significantly different from those of the control group (p < 0.05). In conclusion, there are changes in heart rate from wake to drowsiness that are potentially to be detected. The results in our study could be useful for the development of drowsiness detection sensors for effective real-time monitoring.

The development of Fetal Heart Rate monitoring system based on DSP processor (DSP 프로세서를 이용한 태아심음 및 자궁수축감시장치의 개발)

  • Jnag, D.P.;Kim, K.H.;Lee, Y.H.;Lee, Y.K.;Bak, M.I.;Lee, D.S.;Kim, S.I.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.320-324
    • /
    • 1996
  • Digital fetal monitoring system based on the personal computer combined with the digital signal processing board was implemented. The DSP board acquires and digitally processes ultrasound fetal Doppler signal for digital rectification, FIR filtering, autocorrelation function calculation, its peak detection and MEDIAN filtering. The personal computer interfaced with the DSP board is in charge of graphic display, hardcopy, data transmission and on-line analysis of fetal heart rate change including and variability. I used a recursive technique for autocorrelation function computation method and MEDIAN filter which can greatly reduce the amount of calculation and accuracy. I also implemented analysis algorithm of fetal heart rate change based on normal fetal sample data in order to exact diagnosis.

  • PDF

Real-time Intelligent Health and Attention Monitoring System for Car Driver (실시간 지능형 운전자 건강 및 주의 모니터링 시스템)

  • Shin, Heung-Sub;Jung, Sang-Joong;Seo, Yong-Su;Chung, Wan-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1303-1310
    • /
    • 2010
  • Recently, researches related with automative mechanism have been widely studied to increase the driver's safety by continuously monitoring the driver's health condition to prevent driver's drowsiness. This paper describes the design of wearable chest belt for ECG and reflectance pulse oximetry for SpO2 sensors based on wireless sensor network to monitor the driver's healthcare status. ECG, SpO2 and heart rate signals can be transmitted via wireless sensor node to base station connected to the server. Intelligent monitoring system is designed at the server to analyze the SpO2 and ECG signals. HRV (Heart Rate Variability) signals can be obtained by processing the ECG and PPG signals. HRV signals are further analyzed based on time and frequency domain to determine the driver's drowsiness status.

Comparison of Smart Watch Based Pulse Rate Variability with Heart Rate Variability (스마트워치에 기반한 맥박변이도를 이용한 심박변이도 예측 연구)

  • Kim, Changjin;Woo, Jihwan
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.87-93
    • /
    • 2018
  • The measurement of Heart Rate Variability (HRV) using electrocardiogram (ECG) signals has been used to predict fatigue and stress levels in a clinical environment, yet, owing to the complexity of such ECG systems, a domestic, nonclinical monitoring of HRV has not been a practical possibility. Recently though, Pulse Rate Variability (PRV) has been studied as an alternative to HRV. In this study, we investigated the reliability of measuring PRV by means of a smartwatch. The PRV results were compared to HRV results in similar test conditions, i.e. those obtained under rapid and deep-breathing scenarios. From the results obtained, it transpires that the Bland-Altman ratio and cross-correlation coefficients between several PRV and HRV parameters were highly correlated, thus suggesting that the results of measuring PRV using a smartwatch can be used to predict HRV in nonclinical environments.

Need Assessment for Smartphone-Based Cardiac Telerehabilitation

  • Kim, Ji-Su;Yun, Doeun;Kim, Hyun Joo;Ryu, Ho-Youl;Oh, Jaewon;Kang, Seok-Min
    • Healthcare Informatics Research
    • /
    • v.24 no.4
    • /
    • pp.283-291
    • /
    • 2018
  • Objectives: To identify the current status of smartphone usage and to describe the needs for smartphone-based cardiac telerehabilitation of cardiac patients. Methods: In 2016, a questionnaire survey was conducted in a supervised ambulatory cardiac rehabilitation (CR) program in a university affiliated hospital with the participation of heart failure or heart transplantation patients who were smartphone users. The questionnaire included questions regarding smartphone usage, demands for smartphone-based disease education, and home health monitoring systems. Results were described and analyzed according to principal diagnosis. Results: Ninety-six patients (66% male; mean age, $5{\pm}11$ years), including 56 heart failure and 40 heart transplantation patients, completed the survey (completion rate, 95%). The median daily smartphone usage time was 120 minutes (interquartile range, 60-300), and the most frequently used smartphone function was text messaging (61.5%). Of the patients, 26% stated that they searched for health-related information using their smartphones more than 1 time per week. The major source of health-related information was Internet browsing (50.0%), and the least sought source was the hospital's website (3.1%). Patients with heart failure expressed significantly higher needs for disease education on treatment plan, home health monitoring of blood pressure, and body weight (${\chi}^2=5.79$, 6.27, 4.50, p < 0.05). Heart transplantation patients expressed a significant need for home health monitoring of body temperature (${\chi}^2=5.25$, p < 0.05). Conclusions: Heart failure and heart transplantation patients show high usage of and interest in mobile health technology. A smartphone-based cardiac telerehabilitation program should be developed based on high demand areas and modified to suit to each principal diagnosis.