• Title/Summary/Keyword: healthy-root

Search Result 323, Processing Time 0.028 seconds

Mineral Nutrition Contents of Rusty-Root To1erance Ginseng Lines in 6-Year Old Root (6년생 적변내성 인삼계통의 무기성분함량 특성)

  • Lee, Sung-Sik;Lee, Kyoung-Hwan;Kim, Eun-Soo
    • Journal of Ginseng Research
    • /
    • v.26 no.3
    • /
    • pp.159-164
    • /
    • 2002
  • Experiments were carried out to select the rusty tolerance lines in 39 inbred lines of ginseng cultivated in field, among them, 7 lines showed low degree of rusty root while 7 lines showed high degree of rusty root. In order to select marker elements among mineral nutrients for rusty ginseng root, we combined 5 groups as follows : Ⅰ (healthy-root of low rusty degree lines vs. rusty-root of high rusty degree lines), II (healthy-root vs. rusty-root in low rusty degree lines), Ⅲ (healthy-root vs. rusty-root in high rusty degree lines), Ⅳ (low rusty degree lines vs. high rusty degree lines in rusty-root), Ⅴ (low rusty degree lines vs. high rusty degree lines in healthy-root), and analyzed mineral nutrition at different root parts. The contents of mineral nutritions in stele and cortex were not different between healthy lines and rusty lines, and between healthy roots and rusty roots, but that in branch and fine roots were not a tendency. The contents of Fe, Na and Al in epidermis were higher in rusty-root than healthy-root. Also, the contents of Fe and Al in epidermis of high rusty degree lines (HRL) were higher than those of low rusty degree lines (LRL) in healthy-roots and rusty-roots, and so we suggest Fe and Al as markers to select low rusty degree ginseng lines.

Studies on the Biological and Chemical Properties of Musty Ginseng Root and its Causal Mechanism (적변삼의 생물.화학적 특성과 그 발생원인에 관하여)

  • 정영륜;오승환
    • Journal of Ginseng Research
    • /
    • v.9 no.1
    • /
    • pp.24-35
    • /
    • 1985
  • Rusty root of ginseng has been known as one of the limiting factors in ginseng production in Korea. An attempt was, therefore, made to elucidate biological and chemical natures of the rusty root, and the redox Potential of the ginseng cultivated soils were measured and compared with diseased and non-diseased soils. Reddish discoloration was most frequently observed on the epidermis of ginseng root and the pigments were accumulated in all epidermal cells of the diseased lesions. The lower the redox potential of the ginseng cultivated soil was, the more severe the rusty root was observed. Fe content in the diseased epidermis was 3 times higher than that of healthy one. Organic acids such as oxalic, malonic, succinic, and citric acids were also higher in the mss root than in the healthy one. Thin layer chromatogram of phenolic acid fractions obtained from the epidermal cells of the rusty root of ginseng exhibited 3 to 4 unidentified substances not found in the healthy root. Also lignification of the epidermal cells and the activity of phenylalanine ammonia lyase were greater in the rusty root than the healthy root. Colony formation and conidia production of F. solani, And mycelial growth and sclerotium formation of Sclerotinia sp. isolated from ginseng root were suppressed in a nutritionally minimal medium supplemented with water extract of rusty ginseng root epidermis. It is, therefore, suggested that rusty root of ginseng is caused by unfavorable rhizosphere environmental stress or stresses resulting abnormal metabolism in the root as a selfdefence mechanism of non-specific resistance responses.

  • PDF

THE SCANNING ELECTRON MICROSCOPIC STUDY OF HEALTHY AND PATHOLOGIC STRUCTURE OF ROOT SURFACE (정상 및 염증상태의 치근표면구조의 주사전자현미경적 연구)

  • Kim, Mi-Yeung;Kim, Chong-Kwan
    • The Journal of the Korean dental association
    • /
    • v.19 no.7 s.146
    • /
    • pp.625-634
    • /
    • 1981
  • A Scanning Electron Microscopic Study of the root surface changes was carried out in advanced periodontal disease. The results obtained were summerized as follow; 1. The root surface of cementoenamel junction of healthy root showed smooth surface, while the root surface of diseased state showed covering of deposits which regareded as a course of calcification. 2. At the mid-portion of the root, the regular cemental projection were observed on the healthy root surface and on the root surface of diseased state, cemental projection showed relatively irregular pattern. 3. On the root surface which consist of wall of periodontal pocket, there were various deposits which could be considered as subgingival calculus, bacterial plaque and epithelial attachment remnant. 4. The bottom area of the pathologic pocket, tearing altered collagen fibers were seen on the root surface. 5. At the apical portion of root surface, calcified fibers ran parallel to the root surface in healthy tooth and the fiber bundles of periodontal ligament were seen in the diseased state.

  • PDF

Saponin Contents, Histological and Cytological Characteristics of Ginseng Root with Physiological Disorder (생리장해 인삼의 Saponin 함량과 조직 및 세포학적 특성)

  • 안상득
    • Journal of Ginseng Research
    • /
    • v.16 no.1
    • /
    • pp.44-52
    • /
    • 1992
  • This study investigated ginsenosides and tissue characteristics of roots injured by physiological disorder, rusty and rough skin. After separation to cortex and stele parts of healthy, rusty (red) and rough skin roots, respectively, the contents of saponin and ginsenosides were analyzed. And also, the histological and cytological characteristics of cortex and stele parts were investigated. Crude saponin contents were little different among healthy, rusty (red) and rough skin root and ginsenesides as - Rgl, - Re and - Rbl were largely detected both in stele and cortex part. The ratio of PT/PD showed about 1:1 in three kinds of root. In histological study, destoryed cells in epidermis of rusty(red) root, and those in epidermis and exodermis of rough skin root were observed. The cells in cortex of rusty (red) and rough skin root have generally nucleus with unfixed shape, unequal cell wall, large number of vacuole and mitochondris, and unidentified dark substances compared to healthy root. But in cell of stele tissue, most of organellE seems to be normal except a small number of cells in rough skin root.

  • PDF

REGENERATION OF THE ALVEOLAR BONE AND TRANSPLANTED ROOTS INTO THE PERIODONTALLY INVOLVED EXTRACTION SOCKETS IN DOGS;I : EFFECT OF ROOT PLANING PROCEDURE (성견치주질환 이환 발치와내 이식 치근과 발치와 치조골 재생에 대한 연구;I. 치근활택술의 영향)

  • Kim, Chong-Kwan;Chai, Jung-Kiu;Cho, Kyoo-Sung;Kim, Jin;Han, Soo-Boo;Choi, Sang-Mook
    • Journal of Periodontal and Implant Science
    • /
    • v.24 no.1
    • /
    • pp.64-86
    • /
    • 1994
  • The authors have transplanted periodontally involved roots which had been root planed into healthy and periodontally involved extraction sockets, and studied the root resorption patterns as well as its effect on new bone formation and wound healing. Alveolar bone around mandibular premolars of 6 adult dogs has been surgically removed, followed by ligation of orthodontic elastic wires for 8 weeks inducing chronic periodontal disease. After removing the crown portions, roots were extracted, and notches were made on the root surfaces discriminating healthy and periodontally involved areas using burs. Controls and experimental groups were divided as follows. Control I : Transplantation of periodontally involved root into healthy extraction sockets. Control II : Transplantation of periodontally involved root into diseased extraction sockets. Experimental group I : Transplantation of root planed roots into healthy extraction sockets. Experimental group II : Transplantation of root planed roots into diseased extraction sockets. Extraction sockets were sutured after transplantations, completely submerging the roots. Healing progress was histologically observed at 2nd, 8th, 12th, and 20th weeks, and the results were as follows ; 1. No inflammation or infection within the extraction sockets had been observed in all groups throughout the experimental period. 2. Reversal lines were observed at week 2 in all groups, clearly discriminating socket walls and new bone, and numerous blood vessels were observed in the new bone trabeculae. 3. Experimental groups showed markedly less root resorption compared to the controls at week 2, but as time progressed, severe resorptions were present in all groups. 4. Localized areas of new bone ankylosis were observed, and the rest of the areas showed collagen fiber insertion with new bone formation at its periphery. 5. No clear differences were found in healing and alveolar bone regeneration between healthy and diseased extraction sockets. 6. The amount of root resorption and ankylosis had increased up to week 8 and 12, showing ankylosis of new bone and the roots. However, no further increase in ankylosis was observed at week 20. 7. Most of the cementum on healthy roots was directly ankylosed to new bone at week, 2, and were gradually resorbed and replaced by new bone thereafter. These results appear to indicate that root planing may inhibit early root resorption of transplanted roots, but gradual replacement by alveolar bone and collagen fibers eventually occur. Condition of the roots or presence of disease in extraction sockets do not appear to make marked differences in alveolar bone regeneration process.

  • PDF

Studies on the Pear Abnormal Leaf Spot Disease - 3. Graft Transmissibility of the Causal Agent - (배나무잎 이상반점증상에 관한 연구 - 3. 병원의 접목전염 -)

  • 남기웅;김충회
    • Korean Journal Plant Pathology
    • /
    • v.11 no.3
    • /
    • pp.217-223
    • /
    • 1995
  • Nature of graft transmissibility of pear abnormal leaf spot disease was examined by various grafting methods in the greenhouse and field. When the diseased and symptomless twigs were collected in winter and grafted in the next spring to the seed-originated healthy root stock, the abnormal leaf spot was developed only in the case of the diseased twigs. Double grafting on a seed-originated healthy root stock, where the diseased and the symptomless twigs were used as 1st and 2nd scions, respectively, developed abnormal leaf spot lesions without exception on the 2nd scions. Tongue-graft with the diseased and the symptomless trees also incited abnormal leaf spots on the both trees. Abnormal leaf spots of were also developed on HN-39, an indicator pear tree, used as a 2nd scion in a double graft test, where the diseased twig and a seed-originated healthy tree were used as the 1st scion and the root stock, respectively. When the diseased twig was top-grafted to the healthy root stock, lesion development of abnormal spot was limited to the grafted twig itself in the 1st year, but expanded to the main branches in the 2nd year, and spread over the whole tree in the 3rd year. This result indicates that the causal agent of abnormal leaf spot disease is transmitted by graft.

  • PDF

Accumulation of Crude Lipids, Phenolic Compounds and Iron in Rusty Ginseng Root Epidermis (적변삼 외피에서 지질, 페놀성물질 및 철 성분의 축적에 관한 연구)

  • Lee, Tae-Su;Mok, Sung-Kyun;Cheon, Seong-Ki;Yoon, Jong-Hyuk;Baek, Nam-In;Choe, Jyung
    • Journal of Ginseng Research
    • /
    • v.28 no.3
    • /
    • pp.157-164
    • /
    • 2004
  • The study was conducted to investigate the tissue and chemical characteristics of rusty root epidermal cells. In histological study, the rusty symptoms were frequently observed in the epidermis of ginseng root and to be yellow under microscopic observation. Disks of the epidermal cell tissue of the rusty root were usually 2 and 3 times greater in the number of cell layer and thickness of cell wall than the healthy root, respectively. The color degree of methanol extracts from the rusty root epidermis was 5.5 times higher than that of the healthy root. And the extracts of rust matter in the root epidermis were easily dissolved in polar solvents compared to nonpolar solvents. UV-absorption spectra of methanol extracts in various fractions of phenolics showed a maximum peak between 275∼280 nm. The crude lipids and phenolic compounds such as acid insoluble bound phenolics, acid insoluble esterified phenolics, acid insoluble condensed phenolics, insoluble bound phenolics and free phenolics were also more in the rusty root epidermis than in the healthy one. Fe content in the rusty root epidermis was 2.7 times higher than that of healthy one. It was presumed that the phenolic compounds(precursor of the rusty) in association with lipid and iron in the root epidermis might defence the root when ginseng root was depressed by the unfavorable conditions in soil and/or portions of a root system were subjected to anoxic conditions.

Bacterial Microbiome Differences between the Roots of Diseased and Healthy Chinese Hickory (Carya cathayensis) Trees

  • Xiao-Hui Bai;Qi Yao;Genshan Li;Guan-Xiu Guan;Yan Fan;Xiufeng Cao;Hong-Guang Ma;Mei-Man Zhang;Lishan Fang;Aijuan Hong;Dacai Zhai
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1299-1308
    • /
    • 2023
  • Carya cathayensis is an important economic nut tree that is endemic to eastern China. As such, outbreaks of root rot disease in C. cathayensis result in reduced yields and serious economic losses. Moreover, while soil bacterial communities play a crucial role in plant health and are associated with plant disease outbreaks, their diversity and composition in C. cathayensis are not clearly understood. In this study, Proteobacteria, Acidobacteria, and Actinobacteria were found to be the most dominant bacterial communities (accounting for approximately 80.32% of the total) in the root tissue, rhizosphere soil, and bulk soil of healthy C. cathayensis specimens. Further analysis revealed the abundance of genera belonging to Proteobacteria, namely, Acidibacter, Bradyrhizobium, Paraburkholderia, Sphaerotilus, and Steroidobacter, was higher in the root tissues of healthy C. cathayensis specimens than in those of diseased and dead trees. In addition, the abundance of four genera belonging to Actinobacteria, namely, Actinoallomurus, Actinomadura, Actinocrinis, and Gaiella, was significantly higher in the root tissues of healthy C. cathayensis specimens than in those of diseased and dead trees. Altogether, these results suggest that disruption in the balance of these bacterial communities may be associated with the development of root rot in C. cathayensis, and further, our study provides theoretical guidance for the isolation and control of pathogens and diseases related to this important tree species.

Effects of Plant Age Inoculum Concentration and Inoculation Method on Root Gall Development of Clubroot Disease of Chinese Cabbage Caused by Planmodiophora brassicae (배추무사마병의 뿌리혹 형성에 미치는 묘령, 접종원 농도 및 접종방법의 영향)

  • 김충회
    • Plant Disease and Agriculture
    • /
    • v.5 no.2
    • /
    • pp.90-94
    • /
    • 1999
  • Effect of inoculum concentration inoculation method and plant age on development of clubroot disease of Chinese cabbage seedling were examined in growth chambers. Root galls were developed at the concentration of 105 resting spore or above per ml of incoulum and as the inoculum concentration became higher rate of development of root galls was faster. In the plants with root gall development fresh weight of above ground parts was reduced to 30-44% of that of healthy plants but root weight increased by 4-10 times. Growth of diseased plants was greatly reduced as compared to healthy plants. Planting in the diseased soil as a inoculation method was most effective for disease development showing uniform infections but time of initial root gall development was delayed by root soaking inoculation. Some plants inoculated by soil drenching method did not develop root galls. However root gall enlargement after its initial formation did not differ greatly among inoculation methods. Nine-day-old seedlings showed poor development of root gall but 16-days-old seedlings was found to be most adequate for inoculation for gall development.

  • PDF

Phenolic Compounds Contents of Rusty-Root Tolerance Ginseng Lines in 6-Year Old Root (6년생 적변내성 인삼계통의 Phenolic Compounds 함량 특성)

  • Lee, Sung-Sik
    • Journal of Ginseng Research
    • /
    • v.26 no.3
    • /
    • pp.165-169
    • /
    • 2002
  • Experiments were carried out to select marker for rusty tolerance ginseng root using high rusty degree lines(HRL) and low rusty degree lines (LRL) in ginseng plant. A strong positive correlation was detected between degree of rusty-root in 4-year-root and that in 6-year-root. The contents of phenolic compounds among samples were not different in stele and branch & fine roots. The contents of phenolic compounds of rusty-roots was higher than that of healthy-roots in cortex, but those of high 겨sty degree lines (HRL) were not different compared with low rusty degree lines (LRL) in cortex using same rusty-degree samples. These suggest that phenolic compounds in cortex tissue were not adequate as a marker to select rusty tolerance ginseng roots. The contents of phenolic compounds of rusty-roots were higher than that of healthy-roots in epidermis, and those of HRL were higher than LRL in epidermis using same rusty-degree samples. These suggested that the contents of phenolic compounds in epidermis tissue might be a potent marker to select rusty tolerance ginseng roots.