DOI QR코드

DOI QR Code

Accumulation of Crude Lipids, Phenolic Compounds and Iron in Rusty Ginseng Root Epidermis

적변삼 외피에서 지질, 페놀성물질 및 철 성분의 축적에 관한 연구

  • Lee, Tae-Su (KT&G Central Research Institute) ;
  • Mok, Sung-Kyun (Korea Ginseng Corp) ;
  • Cheon, Seong-Ki (KT&G Central Research Institute) ;
  • Yoon, Jong-Hyuk (KT&G Central Research Institute) ;
  • Baek, Nam-In (Graduate School of Biotechnollogy & Plant Metabolism Research Center, Kyunghee University) ;
  • Choe, Jyung (Department of Agricultural Chemistry, College of Agriculture, Kyungpook National University)
  • Published : 2004.09.01

Abstract

The study was conducted to investigate the tissue and chemical characteristics of rusty root epidermal cells. In histological study, the rusty symptoms were frequently observed in the epidermis of ginseng root and to be yellow under microscopic observation. Disks of the epidermal cell tissue of the rusty root were usually 2 and 3 times greater in the number of cell layer and thickness of cell wall than the healthy root, respectively. The color degree of methanol extracts from the rusty root epidermis was 5.5 times higher than that of the healthy root. And the extracts of rust matter in the root epidermis were easily dissolved in polar solvents compared to nonpolar solvents. UV-absorption spectra of methanol extracts in various fractions of phenolics showed a maximum peak between 275∼280 nm. The crude lipids and phenolic compounds such as acid insoluble bound phenolics, acid insoluble esterified phenolics, acid insoluble condensed phenolics, insoluble bound phenolics and free phenolics were also more in the rusty root epidermis than in the healthy one. Fe content in the rusty root epidermis was 2.7 times higher than that of healthy one. It was presumed that the phenolic compounds(precursor of the rusty) in association with lipid and iron in the root epidermis might defence the root when ginseng root was depressed by the unfavorable conditions in soil and/or portions of a root system were subjected to anoxic conditions.

인삼재배지에서 나타나는 적변삼 외피세포 조직의 특성과 화학성분을 조사하였던 바 그 결과를 요약하면 다음과 같다. 1. 적변외피는 현미경 관찰결과 적색이 아닌 황색으로 보였으며, 적변외피의 세 포층수는 10∼13층으로 건전외피의 5∼6층에 비해 2배 정도 많았고, 외피층의 두께에 있어서는 적변외피가 179 $\mu\textrm{m}$로서 건전외피의 55$\mu\textrm{m}$에 비해 3.2배 정도 더 두꺼웠다. 2. 착색도는 적변외피가 건전외피에 비해 5.5배 정도 짙게 나타났으며, 적변물질의 각 추출분획별 용해도는 비극성 보다는 극성용매에서 높았고, 또한 UV-spectrum은 275∼280nm에서 흡광 최대를 나타냈다. 3. 적변외피는 지질성 물질은 물론 산불용성 에스테르화 페놀물질, 산불용성 결합 페놀물질, 산불용 축합성 페놀물질, 불용성 결합 페놀물질 및 유리 페놀 물질 함량이 건전외피에 비해 많았으며 철의 함량에 있어서도 적변외피가 2,220 ppm으로 건전외피의 820 ppm 보다 2.7배 정도 많았다. 4. 적변삼은 인삼뿌리가 분포된 근권환경의 어떤 외적환경에 의해 뿌리가 stress를 받을 때 자체방어 물질인 phenol 물질이 외피로 배출되면서 외피의 지질성 물질과 polymerization되고 이때 철(Fe)이 체놀성 물질과 강하게 chelating 되는 것으로 추정된다.

Keywords

References

  1. 금촌병 : 고려인삼사 4권, 인삼재배편, 조선총독부, 1-149 (1936)
  2. 정후섭, 이인원 : 인삼 적부병 원인 및 방제 대책에 관한 연구. 인삼연구용역보고서, 전매청 (1978)
  3. 김명수, 이종화, 이태수, 백남인 : 인삼의 생리장해 방제에 관한 연구, 인삼연보, 한국인삼연초연구소, 1-96 (1984)
  4. 정명륜, 오승환, 이일호, 박창석 : 적변삼의 생리화학적 특성과 그 발생원인에 관하여. 한국인삼학회지, 9(1), 24-35 (1985)
  5. 이태수, 목성균, 천성기, 최강주, 최정 : 적변인삼의 화학적 성분에 관한 연구. 고려인삼학회지, 19(1), 77-83 (1995)
  6. Kolattukudy, P.E. : Structure, biosynthetic, and biodegrdation of cutin and suberin.Ann. Rev. Plant Physiol. 32, 539-567 (1981) https://doi.org/10.1146/annurev.pp.32.060181.002543
  7. Espelie, K.E., Davis, R.E. and kolattukudy, P.E. : Compostion, ultrastructure and function of the cutin and suberin-containing layers in the leaf, fruit feel, juice-sac and inner seet coat of grapefruit. Planta. 149, 498-511 (1980) https://doi.org/10.1007/BF00385755
  8. Soliday, C.L., kolattukdy, P.E. and Davis, R.W. : Chemical and ultrastructural evidence taht waxes associated with the suberin polymer constitute the major diffusion varrier to water vapor in potato tuber. Planta. 146, 607-614 (1979) https://doi.org/10.1007/BF00388840
  9. Krygier, K., Frank, S. and Lawrence, H. : Free, Esterified, and Insoluble-bound phemolic acid,1. Extraction and purification procedure, J. Agric. Food chem. 30(2) 330-334 (1982) https://doi.org/10.1021/jf00110a028
  10. Hammer Shmidt, P.A. and Pratt, P.E. : Phenolic antioxidant activity of dried soybean. J. Food. Sci. 43, 556-571(1978) https://doi.org/10.1111/j.1365-2621.1978.tb02353.x
  11. Kolattukudy, P.E., Espelie, K.E. and Soliday C.L. : Hydrophobic layers attached to cell wall. cutin, suberin and associated waxes. Plant carbohydrates II. Springer Verlag. Berlin. 225-254 (1981)
  12. Tipett, J.T. and O'brien, T.P. : The structure of eucalypt roots. Aust. j. Bot. 24, 619-632 (1976) https://doi.org/10.1071/BT9760619
  13. 작물분석법 위원회편 : 리그닌 재배식물 분석 측정법. 양현당. 399-407 (1976)
  14. Cheshire, M.V., Falshaw, C.P., Floyd, A.J. and Haworth, R.D. : Humic acid II. Structure of humic acids. Tetrahedron. 23, 1669-1682 (1967) https://doi.org/10.1016/S0040-4020(01)82565-5
  15. Espelie, K.E., Franceschi, V.R. and kolattukudy, P.E. : Immunocyto chemical localization and time course of appearance of an anionic peroxidase associated with suberization in wound-healing potato tube tissue. Plant Physiol, 81, 487-492 (1986)
  16. Kolattukudy, P.E. : Biochemistry and function of cutin and suberin. Can. J. Bot. 62, 2918-2933 (1984) https://doi.org/10.1139/b84-391
  17. Espelie, K.E., Sadek, N.Z. and kolattukudy, P.E. : ComPosition of suberin-associated waxes from the subterranean storage oranges of seven plants : parsnip, carrot, ruta baya, turnip, red beet, sweet potato and potato. Planta. 148-476 (1980) https://doi.org/10.1007/BF02395317
  18. O'brien, T.P. and kuo, J. : Development of the suberized lamella in the sheath of wheat leaves. Aust. J. Bot. 23, 783-794 (1975) https://doi.org/10.1071/BT9750783
  19. Kabanauskas, C.K., Stolzy, L.H., Klatz, L.J. and Dewolfe, T.A. : Soil oxygen diffusion rates and mineral accumulations in citrus seedling. Soil. Sci. 111(6), 386-392 (1971) https://doi.org/10.1097/00010694-197106000-00010
  20. Sijmons, P.C., Kolattukudy, P.E. and Bienfait, H.F. : Iron deficiency decrease suberization in been roots through a decrease in suberin-specific peroxidase activity. Plant Physiol. 78, 115-120 (1985) https://doi.org/10.1104/pp.78.1.115
  21. Huang, P.M., Wang, T.S.C., Wang, M.K.,Wu,M.H. and Hsu, N.W.: Retention of phenolic acids by noncrystalline hydroxy-aluminium and-Iron compounds and clay minerals of soils. Soil. Sci. 123, 213-219 (1977) https://doi.org/10.1097/00010694-197704000-00001
  22. King, H.G.C. and Bloomfield, C. : The effects of drying and ageing tree leaves on the ability of their agueous extracts to dissolve ferric oxide. J. Soil. Sci. 19, 67-76 (1968) https://doi.org/10.1111/j.1365-2389.1968.tb01521.x
  23. Schiinitzer, M. and Skinner, S.I.M. : Organic-Metallic interactions in soils: 4. Carboxyl and hydroxyl groups in organic matter and metal retention. Soil. Sci. 99(4), 278-284 (1965) https://doi.org/10.1097/00010694-196504000-00012
  24. Coulson, C.B., Davies, R.I. and Lewis, D.A. : Reduction and transport by polyphenols of iron in model soil columns. J. Soil. Sci. 11, 30-44 (1960) https://doi.org/10.1111/j.1365-2389.1960.tb02199.x

Cited by

  1. species associated with discolored ginseng roots in British Columbia vol.29, pp.4, 2007, https://doi.org/10.1080/07060660709507480
  2. Ectopic overexpression of the aluminum-induced protein gene from Panax ginseng enhances heavy metal tolerance in transgenic Arabidopsis vol.119, pp.1, 2014, https://doi.org/10.1007/s11240-014-0516-2
  3. Morphological and Biochemical Changes in Ginseng Seedling Roots Affected with Stripe Symptoms vol.06, pp.16, 2015, https://doi.org/10.4236/ajps.2015.616257