• 제목/요약/키워드: health sensor

검색결과 1,242건 처리시간 0.026초

가속도 센서 기반의 건강측정 디바이스 연구 (A Study of health device using an accelerometer)

  • 조원식;이승룡;김경호
    • 반도체디스플레이기술학회지
    • /
    • 제7권4호
    • /
    • pp.51-55
    • /
    • 2008
  • In this study, we have figured out exercise time and the amount of burned calories, using a three-axis acceleration sensor which we name as a health sensor. What is more, the health sensor calculates the degree of physical exercise taken during exercise. As is generally known, continuing, regular exercise is far more effective than short time exercise for sustainable health management. The health sensor is, therefore, recommended as an instrument to efficiently carry out the health management. Additionally, the health sensor was applied as an exercise subsidiary system to walking and jumping rope tests. In light of their results, the sensor system was found useful for analyzing the pattern of exercise.

  • PDF

Building structural health monitoring using dense and sparse topology wireless sensor network

  • Haque, Mohammad E.;Zain, Mohammad F.M.;Hannan, Mohammad A.;Rahman, Mohammad H.
    • Smart Structures and Systems
    • /
    • 제16권4호
    • /
    • pp.607-621
    • /
    • 2015
  • Wireless sensor technology has been opened up numerous opportunities to advanced health and maintenance monitoring of civil infrastructure. Compare to the traditional tactics, it offers a better way of providing relevant information regarding the condition of building structure health at a lower price. Numerous domestic buildings, especially longer-span buildings have a low frequency response and challenging to measure using deployed numbers of sensors. The way the sensor nodes are connected plays an important role in providing the signals with required strengths. Out of many topologies, the dense and sparse topologies wireless sensor network were extensively used in sensor network applications for collecting health information. However, it is still unclear which topology is better for obtaining health information in terms of greatest components, node's size and degree. Theoretical and computational issues arising in the selection of the optimum topology sensor network for estimating coverage area with sensor placement in building structural monitoring are addressed. This work is an attempt to fill this gap in high-rise building structural health monitoring application. The result shows that, the sparse topology sensor network provides better performance compared with the dense topology network and would be a good choice for monitoring high-rise building structural health damage.

초고층 건물의 건전성 감시를 위한 변형률 기반 무선 센서 네트워크 기법의 기초적 연구 (Fundamental Research of Strain-based Wireless Sensor Network for Structural Health Monitoring of Highrise building)

  • 정은수;박효선;최석원;차호정
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.429-432
    • /
    • 2007
  • For smart structure technologies, the interests in wireless sensor networks for structural health monitoring are growing. The wireless sensor networks reduce the installation of the wire embedded in the whole structure and save the costs. But the wireless sensor networks have lots of limits and there are lots of researches and developments of wireless sensor and the network for data process. Most of the researches of wireless sensor network is applying to the civil engineering structure and the researches for the highrise building are required. And strain-based SHM gives the local damage information of the structures which acceleration-based SHM can not. In this paper, concept of wireless sensor network for structural health monitoring of highrise building is suggested. And verifying the feasibility of the strain-based SHM a strain sensor board has developed and tested by experiments.

  • PDF

Application of structural health monitoring in civil infrastructure

  • Feng, M.Q.
    • Smart Structures and Systems
    • /
    • 제5권4호
    • /
    • pp.469-482
    • /
    • 2009
  • The emerging sensor-based structural health monitoring (SHM) technology has a potential for cost-effective maintenance of aging civil infrastructure systems. The author proposes to integrate continuous and global monitoring using on-structure sensors with targeted local non-destructive evaluation (NDE). Significant technical challenges arise, however, from the lack of cost-effective sensors for monitoring spatially large structures, as well as reliable methods for interpreting sensor data into structural health conditions. This paper reviews recent efforts and advances made in addressing these challenges, with example sensor hardware and health monitoring software developed in the author's research center. The hardware includes a novel fiber optic accelerometer, a vision-based displacement sensor, a distributed strain sensor, and a microwave imaging NDE device. The health monitoring software includes a number of system identification methods such as the neural networks, extended Kalman filter, and nonlinear damping identificaiton based on structural dynamic response measurement. These methods have been experimentally validated through seismic shaking table tests of a realistic bridge model and tested in a number of instrumented bridges and buildings.

Design and Fabrication of Low Power Sensor Network Platform for Ubiquitous Health Care

  • Lee, Young-Dong;Jeong, Do-Un;Chung, Wan-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1826-1829
    • /
    • 2005
  • Recent advancement in wireless communications and electronics has enabled the development of low power sensor network. Wireless sensor network are often used in remote monitoring control applications, health care, security and environmental monitoring. Wireless sensor networks are an emerging technology consisting of small, low-power, and low-cost devices that integrate limited computation, sensing, and radio communication capabilities. Sensor network platform for health care has been designed, fabricated and tested. This system consists of an embedded micro-controller, Radio Frequency (RF) transceiver, power management, I/O expansion, and serial communication (RS-232). The hardware platform uses Atmel ATmega128L 8-bit ultra low power RISC processor with 128KB flash memory as the program memory and 4KB SRAM as the data memory. The radio transceiver (Chipcon CC1000) operates in the ISM band at 433MHz or 916MHz with a maximum data rate of 76.8kbps. Also, the indoor radio range is approximately 20-30m. When many sensors have to communicate with the controller, standard communication interfaces such as Serial Peripheral Interface (SPI) or Integrated Circuit ($I^{2}C$) allow sharing a single communication bus. With its low power, the smallest and low cost design, the wireless sensor network system and wireless sensing electronics to collect health-related information of human vitality and main physiological parameters (ECG, Temperature, Perspiration, Blood Pressure and some more vitality parameters, etc.)

  • PDF

Canonical correlation analysis based fault diagnosis method for structural monitoring sensor networks

  • Huang, Hai-Bin;Yi, Ting-Hua;Li, Hong-Nan
    • Smart Structures and Systems
    • /
    • 제17권6호
    • /
    • pp.1031-1053
    • /
    • 2016
  • The health conditions of in-service civil infrastructures can be evaluated by employing structural health monitoring technology. A reliable health evaluation result depends heavily on the quality of the data collected from the structural monitoring sensor network. Hence, the problem of sensor fault diagnosis has gained considerable attention in recent years. In this paper, an innovative sensor fault diagnosis method that focuses on fault detection and isolation stages has been proposed. The dynamic or auto-regressive characteristic is firstly utilized to build a multivariable statistical model that measures the correlations of the currently collected structural responses and the future possible ones in combination with the canonical correlation analysis. Two different fault detection statistics are then defined based on the above multivariable statistical model for deciding whether a fault or failure occurred in the sensor network. After that, two corresponding fault isolation indices are deduced through the contribution analysis methodology to identify the faulty sensor. Case studies, using a benchmark structure developed for bridge health monitoring, are considered in the research and demonstrate the superiority of the new proposed sensor fault diagnosis method over the traditional principal component analysis-based and the dynamic principal component analysis-based methods.

The Design of mBodyCloud System for Sensor Information Monitoring in the Mobile Cloud Environment

  • Park, Sungbin;Moon, Seok-Jae;Lee, Jong-Yong;Jung, Kye-Dong
    • International journal of advanced smart convergence
    • /
    • 제5권1호
    • /
    • pp.1-7
    • /
    • 2016
  • Recently, introduced a cloud computing technology to the IT industry, smart phones, it has become possible connection between mobility terminal such as a tablet PC. For dissemination and popularization of movable wireless terminal, the same operation have focused on a viable mobile cloud in various terminal. Also, it evolved Wireless Sensor Network(WSN) technology, utilizing a Body Sensor Network(BSN), which research is underway to build large Ubiquitous Sensor Network(USN). BSN is based on large-scale sensor networks, it integrates the state information of the patient's body, it has been the need to build a managed system. Also, by transferring the acquired sensor information to HIS(Hospital Information System), there is a need to frequently monitor the condition of the patient. Therefore, In this paper, possible sensor information exchange between terminals in a mobile cloud environment, by integrating the data obtained by the body sensor HIS and interoperable data DBaaS (DataBase as a Service) it will provide a base of mBodyCloud System. Therefore, to provide an integrated protocol to include the sensor data to a standard HL7(Health Level7) medical information data.

유-헬스 앱 개발을 위한 센서 추상화: 정확도 향상을 위한 필터링 및 요약 (Sensor Abstraction for U-health Application Development: Filtering and Summarization for Accuracy Enhancement)

  • 오삼권;임은총
    • 한국항행학회논문지
    • /
    • 제19권5호
    • /
    • pp.446-451
    • /
    • 2015
  • 최근 혈압, 체온 및 혈당 같은 개인 건강 정보를 알려주는 센서-기반의 유-헬스 앱에 대한 연구가 활발히 진행되고 있다. 그러나 센서들을 통해 얻어진 정보는 그 정확성에 문제가 있을 수 있으므로 가공되지 않은 상태로 사용하기 어려운 경우가 많다. 본 논문은 스마트폰과 연동하는 생체 센서들을 통해 얻어진 측정값들의 정확성을 향상시키기 위한 센서 추상화 계층을 제안한다. 이 계층은 연결된 센서의 종류를 인식하고 읽어온 센서 값들을 ISO/IEEE 11073 신체 건강 표준에 따라 변환하며, 필요한 경우 측정값들 중에서 이상치(outlier)를 제거하는 필터링(filtering) 기법과 구해진 값들을 보다 적합한 형태로 변환해주는 요약(summarization) 기법을 적용한다. 제안된 센서 추상화 계층의 평가를 위해 안드로이드 기반의 개발보드를 사용한다. 체온 센서와 심박 센서를 통해 얻어진 값들에 대해 필터링 및 요약 기법을 적용한 경우의 결과가 그렇지 않은 경우에 비해 향상된 정확성을 보인다.

Chalcogenide 광섬유를 이용한 호흡측정 센서 개발을 위한 기초 연구 (Feasibility study on the development of respiration sensor using a chalcogenide optical fiber)

  • 유욱재;조동현;장경원;오정은;이봉수;탁계래
    • 센서학회지
    • /
    • 제16권5호
    • /
    • pp.331-336
    • /
    • 2007
  • In this study, we have fabricated an infrared optical fiber based sensor which can monitor the respiration of a patient. The design of a chalcogenide optical fiber based sensor is suitable for insertion into a high electro-magnetic field environment because the sensor consists of low cost and compact mid-infrared components such as an infrared light source, a chalcogenide optical fiber and a thermopile sensor. A fiber-optic respiration sensor is capable of detecting carbon dioxide ($CO_{2}$) in exhalation of a patient using the infrared absorption characteristics of carbon gases. The modulated infrared radiation due to the presence of carbon dioxide is guided to the thermopile sensor via a chalcogenide receiving fiber. It is expected that a mid-infrared fiber-optic respiration sensor which can be developed based on the results of this study would be highly suitable for respiration measurements of a patient during the procedure of an MRI.

Development of wearable devices and mobile apps for fall detection and health management

  • Tae-Seung Ko;Byeong-Joo Kim;Jeong-Woo Jwa
    • International Journal of Advanced Culture Technology
    • /
    • 제11권1호
    • /
    • pp.370-375
    • /
    • 2023
  • As we enter a super-aged society, studies are being conducted to reduce complications and deaths caused by falls in elderly adults. Research is being conducted on interventions for preventing falls in the elderly, wearable devices for detecting falls, and methods for improving the performance of fall detection algorithms. Wearable devices for detecting falls of the elderly generally use gyro sensors. In addition, to improve the performance of the fall detection algorithm, an artificial intelligence algorithm is applied to the x, y, z coordinate data collected from the gyro sensor. In this paper, we develop a wearable device that uses a gyro sensor, body temperature, and heart rate sensor for health management as well as fall detection for the elderly. In addition, we develop a fall detection and health management system that works with wearable devices and a guardian's mobile app to improve the performance of the fall detection algorithm and provide health information to guardians.