• Title/Summary/Keyword: health abnormality

Search Result 152, Processing Time 0.042 seconds

Length-Weight Relations and Condition Factor (K) of Zacco platypus Along Trophic Gradients in Reservoir Ecosystems (인공호의 부영양화에 따른 피라미(Zacco platypus) 개체군의 전장-체중 관계 및 비만도 지수)

  • Ko, Dae-Geun;Han, Jeong-Ho;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.2
    • /
    • pp.174-189
    • /
    • 2012
  • The objective of this study was to determine the weight-length relations and condition factor (K) of Zacco platypus, along the trophic gradients from oligotrophic to eutrophic state in six reservoir ecosystems ($B_aR$, $Y_yR$, $J_yR$, $G_pR$, $Y_dR$, and $M_sR$), during 2008~2010. The species was selected as a sentinel species for the study, due to its wide distribution and wide trophic gradient. The analysis of trophic state index (TSI), based on total phosphorus (TP) and chlorophyll-a (Chl-a), indicated that reservoirs of $Y_yR$ and $B_aR$ were classified as to be in an oligotrophic state (30~40), the $J_yR$ and $G_pR$ as mesotrophic (40~50), and the $Y_dR$ and $M_sR$ as eutrophic state (50~70). Total 47 species and 26,226 individuals were sampled from 6 reservoirs and sensitive species dominated in the oligotrophic reservoirs ($Y_yR$ and $B_aR$). In the mean time, the tolerant speciesdominated the community in the mesotrophic ($J_yR$ and $G_pR$) and eutrophic ($Y_dR$ and $M_sR$) reservoirs. Regression analysis of body weight, against the total length, indicated that the regression coefficient (b value) was lower in the oligotrophic reservoir (2.77~2.79) than the mesotrophic (3.07~3.17) and eutrophic reservoirs (3.15~ 3.21). This result suggests that the population growth rate Zacco platypus reflected the trophic gradients of the reservoirs. The analysis of condition factor (K) against the total length showed positive slopes (b>3.0) in mesotrophic and eutrophic reservoirs, and a negative slope (b<3.0) in oligotrophic reservoir. The variation of the regression slope of "b" in Z. platypus was accounted for 79.7% [$b=0.012{\times}TSI(TP)+2.395$, p=0.017] by the variation of TSI (TP) and 82.2% [$b=0.013{\times}TSI(Chl-a)+2.36$, p=0.013] by the variation of TSI (Chl-a). The proportion of DELT abnormality increased as the trophic state increases in the reservoirs. The overall data suggest that the growth of the fish populations, based on the length-weight relations and condition factor, reflected the trophic state of nutrient and phytoplankton biomass of the reservoir waters. Thus, in spite of the tolerant characteristics of Z. platypus, hypertrophic states might negatively affect the health of the population.

Significance of brain magnetic resonance imaging(MRI) in the assessment of occupational manganese exposure (직업적 망간 폭로에 있어서 뇌자기공명영상의 의의)

  • 정해관
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.14-30
    • /
    • 1998
  • Manganese is an essential element in the body. It is mainly deposited in the liver and to a lesser degree in the basal ganglia of the brain and eliminated through the bile duct. Rapid turnover of managanese in the body makes it difficult to evaluate the manganese exposure in workers, esecially in those with irregular or intermittent exposure, like welders. Therefore, conventional biomarkers, including blood and urine manganese can provide only a limited information about the long-tern or cumulative exposure to manganese. Introduction of magnetic resonance imaging (MRI) made a progress in the assessment of manganese exposure in the medical conditions related to manganese accumulation, e. g. hepatic failure and long-term total parenteral nutrition. Manganese shortens spin-lattice(T1) relaxation time on MRI due to its paramagnetic property, resulting in high signal intensity (HSI) on T1-weighted image(T1W1) of MRI. Manganese deposition in the brain, therefore, can be visualizedas an HSI in the globus pallidus, the substantia nigra, the putamen and the pituitary. clinical and epidemiologic studies regarding the MRI findings in the cases of occupational and non-occupational manganese exposure were reviewed. relationships between HSI on T1W1 of MRI and age, gender, occupational manganese exposure, and neurological dysfunction were analysed. Relationships betwen biological exposure indices and HSI on MRE werealso reviewed. Literatures were reviewed to establish the relationships between HSI, Manganese deposition in the brain, pathologic findings, and neurological dysfunction. HSI on T1W1 of MRI reflects regional manganese deposition in the brain. This relationship enables an estimation of regional manganese deposition in the brain by analysing MR signal intensity. Manganese deposition in the brain can induce a neuronal loss in the basal ganglia but functional abnormality is supposed to be related to the cumulative exposure of manganese in the brain, use of brain MRI for the assessment of exposure in a group of workers seems to be hardly rationalized, while ti can be a useful adjunct for the evaluation of manganese exposure int he cases with suspected manganese-related health problems.

  • PDF