• Title/Summary/Keyword: headspace gas analysis

Search Result 90, Processing Time 0.026 seconds

Characterization of Fennel Flavors by Solid Phase Trapping-Solvent Extraction and Gas Chromatography-Mass Spectrometry

  • Shin, Yeon-Jae;Jung, Mi-Jin;Kim, Nam-Sun;Kim, Kun;Lee, Dong-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2389-2395
    • /
    • 2007
  • Headspace solid phase trapping solvent extraction (HS-SPTE) and GC-MS was applied for the characterization of volatile flavors from fennel, anise seed, star-anise, dill seed, fennel bean, and Ricard aperitif liquor. Tenax was used for HS-SPTE adsorption material. Recoveries, precision, linear dynamic ranges, and the limit of detection in the analytical method were validated. There were some similarities and distinct differences between fennel-like samples. The Korean and the Chinese fennels contained trans-anethole, (+)-limonene, anisealdehyde, methyl chavicol as major components. The volatile aroma components from star anise were characterised by rich trans-anethole, (+)-limonene, methyl chavicol, and anisaldehyde. Additionally, principal component analysis (PCA) has been used for characterizing or classifying eight different fennel-like samples according to origin or other features. A quite different pattern of dill seed was found due to the presence of apiol (dill).

Studies on Volatile Compounds in Lipoxygenase Deficient-soybean and Its Products (Lipoxygenase 결핍 콩과 그 가공품의 휘발성 성분 분석)

  • 김수희;이양봉;황인경
    • The Korean Journal of Food And Nutrition
    • /
    • v.13 no.2
    • /
    • pp.118-124
    • /
    • 2000
  • Lipoxygenase(LOX) in soybeans is responsible for beany flavors which limit the wide utilization of soybeans to foods. This study was conducted to analyze beany flavor compounds of the normal Hwagkeumkong and LOX-deficient soybean cultivars, Jinpumkong which lacks L-2, L-3, and Jinpumkong 2 which lacks all L-1, L-2, L-3. Using the combination of dynamic headspace sampling and gas chromatography-mass selective detector(DHS-GC-MSD) for analyzing volatile compounds, hexanal and hexanol were identified in whole soy flour of all three soybena cultivars. Hwangkeumkong had more volatile compounds than Jinpumkong and Jinpumkong 2 in defatted soy flour. Hexanal and acetic acid were identified in soy milk of all three soybean cultivars but Hwangkeumkong had more volatile compounds than Jinpumkong 2. From the analysis with a static headspace sampling(SHS) and GC-MSD the major compounds were hexanal, acetic acid, 1-hexanol, and 1-octen-3-ol. The content of acetic acid was similar among three cultivars. But contents of hexanal and pentanal in Jinpumkong 2 were less than that of Jinpumkong and Hwangkeumkong. Using GC-FID, Jinpumkong 2 had less contents of hexanal and pentanol than Hwangkeumkong in whole soy flour and defatted soy flour. In this study, LOX-deficient soybean cultivars showed less hexanal, pentanol and other compounds than the normal Hwangkeumkong. However quite amount of beany flavor compounds were identified in Jinpumkong and Jinpumkong 2. So further studies are required to characterize LOX isozymes, to understand the mechanisms of beany flavors production, and to develop some other methods for removing beany flavor.

  • PDF

Isolation and Concentration of Organic Components from a Complex Matrix into Three Fractions of Different Volatilities (복합 유기혼합물체로부터 휘발성이 서로 다른 세 유기화합물 그룹의 분리 농축방법의 연구)

  • Kyoung Rae Kim
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.30-37
    • /
    • 1981
  • A simple micro-sampling system is described which facilitates isolation and concentration of complex organic constituents into three fractions of different volatilities. The method involves the headspace trapping of very volatile components from a complex matrix onto a porous polymer, Tenax GC, followed by the solvent elution of the matrix and the subsequent fractions of the eluate into volatile and less-volatile fractions. The headspace and the volatile fractions are then analyzed by high-resolution capillary gas chromatography. The less-volatile fraction is analyzed by high-performance liquid chromatography. Experimental details and the results obtained using tobacco leaves as a complex organic matrix are presented.

  • PDF

FUNCTIONAL BEVERAGE FOR REDUCING BAD BREATH

  • Choi W;Kim S. R.;Kim Y. S;Park Y. K
    • Proceedings of the Korean Society of Food Science and Nutrition Conference
    • /
    • 2001.12a
    • /
    • pp.140-151
    • /
    • 2001
  • This study was performed to examine a possible application of the beverage as a bad breath controlling food. To achieve this objective, methods of gas chromatography, electronic nose, sensory analysis and halimeter were used to detect reduction in odor intensities of bad breath caused by the functional beverage as well as its active ingredients. According to results of GC and electronic nose, adding green tea and champignon extracts to bad breath indicators, methylmercaptan and trimethylamine, resulted in significant reduction in headspace concentrations of two indicators. GC results revealed that headspace concentrations of 5 ug/ml of methylmercaptan and 30 ug/ml of trimethylamine added to various concentrations of two extracts were reduced up to $100\%$ after incubating mixtures at $37^{\circ}C$ for 5min. When the functional beverage was properly formulated with green tea extract, champignon extract and $\alpha$-cyclodextrin and evaluated for its deodorizing effect systematically, it also showed distinctive deodorizing activities against bad breath indicators. Conclusively, results obtained from this study might encourage introduction of a new type of bad breath control food in near future.

  • PDF

Analysis of Volatile Flavor Compounds in Milk Using Electronic Nose System (전자코 시스템을 이용한 우유의 품질에 따른 휘발성 향기성분 분석)

  • Kang, Nae Kyung;Jun, Tae-Sun;Yang, Yoon Seok;Kim, Yong Shin
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.320-325
    • /
    • 2014
  • Volatile flavor compounds from milk were analyzed and identified by using the analysis methods of headspace solid phase microextraction gas chromatography/mass spectrometry (HSPME-GC/MS) and electronic nose (E-Nose) system. About 30 volatile compounds were identified by HSPME-GC/MS for the fresh and off-flavor milk samples. Also, the correlation between rancidity and ageing days of milk was obtained by the aid of principal component analysis algorithm. It shows that the E-Nose system can identify the various types of milk flavor. These results imply that the analysis method based on the E-nose system can apply to the quality control of milk flavor and the rancidity.

Essential Oil Analysis of Illicium anistum L. Extracts

  • Min, Hee-Jeong;Kim, Chan-Soo;Hyun, Hwa-Ja;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.682-688
    • /
    • 2017
  • Fresh japanese anise (Illicium anisatum L.) tree leaves were collected and ground after drying. The essential oils of the leaves were analyzed by gas chromatography-mass spectrometry (GC-MS) using headspace (HS) and solid phase-microextra (SPME) methods. Volatile components of the leaves were identified 21 and 65 components in HS and SPME, respectively. The main components of the essential oils obtained by HS method were eucalyptol (36.7%), (+)-sabinene (15.61%), ${\delta}$-3-carene (6.87%), ${\alpha}$-pinene (6.07%), ${\gamma}$-terpinen (5.72%), ${\alpha}$-limonene (5.26%), ${\beta}$-myrcene (4.13%), ${\alpha}$-terpinene (4.04%) and ${\beta}$-pinene (3.73%). The other components were less than 3.5%. SPME method also showed that eucalyptol (17.88%) was main. The other were 5-allyl-1-methoxy-2 (13.29%), caryophyllene (6.09%), (+)-sabinene (5.60%), ${\alpha}$-ocimene (4.89%) and ${\beta}$-myrcene (3.73%), and the rest were less amounts than 3.5%. This work indicated that many more volatile components were isolated, comparing to the previous literature data and that SPME method was much more effective than HS method in the analysis of the volatile components.

고체상 미량분석법(SPME)을 이용한 GC/FID에서의 BTEX 및 TCE 동시 분석

  • 이재선;장순웅;이시진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.405-408
    • /
    • 2003
  • The soild phase microextraction(SPME)fiber which contains 100${\mu}{\textrm}{m}$ polydimethyl siloxane of a stationary phase was used for the analysis of volatile organic compounds contained in aqueous solution. volatile organic compounds, which were spiked in blank water and extracted by the headspace SPME techique, were analyzed by gas chromatography/flame ionization detector(GC/FID). The optimu condition of SPME fiber is determined that the analytes were extracted for 40min from extracts by using PDAfS100${\mu}{\textrm}{m}$ fiber. This new method could have wide application for the analysis of VOCs in aqueous solution.

  • PDF

The Global Volatile Signature of Veal via Solid-phase Microextraction and Gas Chromatography-mass Spectrometry

  • Wei, Jinmei;Wan, Kun;Luo, Yuzhu;Zhang, Li
    • Food Science of Animal Resources
    • /
    • v.34 no.5
    • /
    • pp.700-708
    • /
    • 2014
  • The volatile composition of veal has yet to be reported and is one of the important factors determining meat character and quality. To identify the most important aroma compounds in veal from Holstein bull calves fed one of three diets, samples were subjected to solid-phase microextraction (SPME) combined with gas chromatography-quadrupole mass spectrometry (GC-MS). Most of the important odorants were aldehydes and alcohols. For group A (veal calves fed entirely on milk for 90 d before slaughter), the most abundant compound class was the aldehydes (52.231%), while that was alcohols (26.260%) in group C (veal calves fed starter diet for at least 60 d before slaughter). In both classes the absolute percentages of the volatile compounds in veal were different indicating that the veal diet significantly (p<0.05) affected headspace volatile composition in veal as determined by principal component analysis (PCA). Twenty three volatile compounds showed significance by using a partial least-squared discriminate analysis (PLS-DA) (VIP>1). The establishment of the global volatile signature of veal may be a useful tool to define the beef diet that improves the organoleptic characteristics of the meat and consequently impacts both its taste and economic value.

Comparison Solid Phase Microextraction with Purge & Trap on the GC/MS Analysis of Volatile Organic Compounds in Biota Samples (Solid Phase Microextraction 및 Purge & Trap을 이용한 생물시료 중 휘발성 유기화합물의 GC/MS 분석비교)

  • Ahn, Yun-Gyong;Seo, Jong-Bok;Hong, Jongki
    • Analytical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.392-399
    • /
    • 2001
  • The analysis of n-butylbenzene and 1,2-dibromo-3-chloropropane (DBCP) as volatile organic compounds in biota samples was performed by gas chromatography/mass spectrometry-selected ion monitoring mode. The target compounds, n-butylbenzene and DBCP, in biota samples were extracted by headspace solid phase microextraction (SPME) with $100{\mu}m$ polydimethyl siloxane (PDMS) fiber and purge & trap method. The extraction recoveries of these compounds obtained by SPME was 85.8% for n-butylbenzene and 92.4% for DBCP, respectively. Each value of method detection limit were $0.15{\mu}g/kg$ and $0.05{\mu}g/kg$, respectively. While in the case of purge & trap method, the extraction recovery was 115.2% for n-butylbenzene, 80.9% for DBCP and method detection limit were $0.04{\mu}g/kg$ and $0.70{\mu}g/kg$, respectively. The extraction yields and detection limits of these compounds obtained by purge & trap were equivalent to those by SPME.

  • PDF

Analysis of volatile aroma compounds from vanilla perfume using headspace disk type monolithic material sorptive extraction (시료상층부 원판 형태 단일 다공성 물질을 이용한 바닐라 향수의 휘발성 아로마 성분 추출 분석)

  • Son, Hyun-Hwa;Lee, Dong-Sun
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.421-428
    • /
    • 2011
  • In this study, headspace disk type monolithic material sorptive extraction (HS-MMSE) was developed, validated and applied to the analysis of volatile aroma compounds from vanilla perfume by gas chromatography -mass spectrometry (GC/MS). HS-MMSE uses monolithic material (MonoTrap) based on silica bonded with octadecyl silane (ODS) and activated carbon as a sorbent. Aroma compounds was adsorbed onto the MonoTrap in headspace and extracted by only 100 ${\mu}L$ of solvent. Total 12 volatile compounds from vanilla perfume were successfully analyzed using HS-MMSE. The influence of extractive parameters was investigated and optimized, using benzyl acetate, linalyl acetate, vanillin, ethyl vanillin as target compounds. Under the optimum condition, the limit of detection (S/N = 3) and the limit of quantification (S/N = 10) of proposed method for the target compounds were obtained within the range of 8.35~13.76 ng and 27.82~45.88 ng, respectively. The method showed good linearity with correlation coefficient more than 0.9888, satisfactory recovery and reproducibility. These results showed that HS-MMSE using disk type MonoTrap is a new promising technique for the analysis of volatile aroma compounds from vanilla perfume.