• 제목/요약/키워드: heading sensor

검색결과 143건 처리시간 0.023초

Comparison of Drift Reduction Methods for Pedestrian Dead Reckoning Based on a Shoe-Mounted IMU

  • Jung, Woo Chang;Lee, Jung Keun
    • 센서학회지
    • /
    • 제28권6호
    • /
    • pp.345-354
    • /
    • 2019
  • The 3D position of pedestrians is a physical quantity used in various fields, such as automotive navigation and augmented reality. An inertial navigation system (INS) based pedestrian dead reckoning (PDR), hereafter INS-PDR, estimates the relative position of pedestrians using an inertial measurement unit (IMU). Since an INS-PDR integrates the accelerometer signal twice, cumulative errors occur and cause a rapid increase in drifts. Various correction methods have been proposed to reduce drifts. For example, one of the most commonly applied correction method is the zero velocity update (ZUPT). This study investigated the characteristics of the existing INS-PDR methods based on shoe-mounted IMU and compared the estimation performances under various conditions. Four methods were chosen: (i) altitude correction (AC); (ii) step length correction (SLC); (iii) advanced heuristic drift elimination (AHDE); and (iv) magnetometer-based heading correction (MHC). Experimental results reveal that each of the correction methods shows condition-sensitive performance, that is, each method performs better under the test conditions for which the method was developed than it does under other conditions. Nevertheless, AC and AHDE performed better than the SLC and MHC overall. The AC and AHDE methods were complementary to each other, and a combination of the two methods yields better estimation performance.

유전자 알고리즘을 이용한 이동 로봇 주행 파라미터의 최적화 (Optimization of parameters in mobile robot navigation using genetic algorithm)

  • 김경훈;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1161-1164
    • /
    • 1996
  • In this paper, a parameter optimization technique for a mobile robot navigation is discussed. Authors already have proposed a navigation algorithm for mobile robots with sonar sensors using fuzzy decision making theory. Fuzzy decision making selects the optimal via-point utilizing membership values of each via-point candidate for fuzzy navigation goals. However, to make a robot successfully navigate through an unknown and cluttered environment, one needs to adjust parameters of membership function, thus changing shape of MF, for each fuzzy goal. Furthermore, the change in robot configuration, like change in sensor arrangement or sensing range, invokes another adjusting of MFs. To accomplish an intelligent way to adjust these parameters, we adopted a genetic algorithm, which does not require any formulation of the problem, thus more appropriate for robot navigation. Genetic algorithm generates the fittest parameter set through crossover and mutation operation of its string representation. The fitness of a parameter set is assigned after a simulation run according to its time of travel, accumulated heading angle change and collision. A series of simulations for several different environments is carried out to verify the proposed method. The results show the optimal parameters can be acquired with this method.

  • PDF

모바일 장치용 MEMS 기반 보행항법시스템을 위한 맵매칭 알고리즘 (Map-Matching Algorithm for MEMS-Based Pedestrian Dead Reckoning System in the Mobile Device)

  • 신승혁;김현욱;박찬국;최상언
    • 제어로봇시스템학회논문지
    • /
    • 제14권11호
    • /
    • pp.1189-1195
    • /
    • 2008
  • We introduce a MEMS-based pedestrian dead reckoning (PDR) system. A walking navigation algorithm for pedestrians is presented and map-matching algorithm for the navigation system based on dead reckoning (DR) is proposed. The PDR is equipped on the human body and provides the position information of pedestrians. And this is able to be used in ubiquitous sensor network (USN), U-hearth monitoring system, virtual reality (VR) and etc. The PDR detects a step using a novel technique and simultaneously estimates step length. Also an azimuth of the pedestrian is calculated using a fluxgate which is the one of magnetometers. Map-matching algorithm can be formulated to integrate the positioning data with the digital road network data. Map-matching algorithm not only enables the physical location to be identified from navigation system but also improves the positioning accuracy. However most of map-matching algorithms which are developed previously are for the car navigation system (CNS). Therefore they are not appropriate to implement to pedestrian navigation system based on DR system. In this paper, we propose walking navigation system and map-matching algorithm for PDR.

GPS를 이용한 선박의 방위정보 향상에 관한 연구 (A Study on Improvement of the Ship's Bearing Information using GPS)

  • 고광섭;최창묵
    • 한국정보통신학회논문지
    • /
    • 제9권3호
    • /
    • pp.528-533
    • /
    • 2005
  • 본 논문은 선박의 마그네틱컴파스와 자이로컴파스의 제한점을 극복하기 위하여 첨단 위성항법 방식인 GPS 시스템을 이용하여 고안된 GPS-Compass를 현재의 향상된 GPS 시스템 환경(2000. 5. 1 미국의 전격적인 SA 오차가 중지되어 정밀도가 7-8배 향상된 환경)을 적용하여 모델을 재검토하고 실험을 통하여 함정에서의 제2방위센서 사용 가능 여부를 확인하기 위하여 연구하였다. 따라서 본 논문에서는 GPS-Compass 구성을 위한 이론식을 정립하고 GPS-Compass 모델을 확인하여 이론적 검증을 하였고, 두 대의 GPS 수신기로 실험 장치를 구축하여 분석한 결과 선박의 제2방위 센서로서의 사용 가능 여부를 확인하였다.

스테레오 비전센서를 이용한 차선감지 시스템 연구 (A Study on Lane Sensing System Using Stereo Vision Sensors)

  • 하건수;박재식;이광운;박재학
    • 대한기계학회논문집A
    • /
    • 제28권3호
    • /
    • pp.230-237
    • /
    • 2004
  • Lane Sensing techniques based on vision sensors are regarded promising because they require little infrastructure on the highway except clear lane markers. However, they require more intelligent processing algorithms in vehicles to generate the previewed roadway from the vision images. In this paper, a lane sensing algorithm using vision sensors is developed to improve the sensing robustness. The parallel stereo-camera is utilized to regenerate the 3-dimensional road geometry. The lane geometry models are derived such that their parameters represent the road curvature, lateral offset and heading angle, respectively. The parameters of the lane geometry models are estimated by the Kalman filter and utilized to reconstruct the lane geometry in the global coordinate. The inverse perspective mapping from the image plane to the global coordinate considers roll and pitch motions of a vehicle so that the mapping error is minimized during acceleration, braking or steering. The proposed sensing system has been built and implemented on a 1/10-scale model car.

랜드마크 기반의 전방향 청소로봇 설계 및 제어 (Design and Control of an Omni-directional Cleaning Robot Based on Landmarks)

  • 김동원;유이고르;강은석;정슬
    • 한국지능시스템학회논문지
    • /
    • 제23권2호
    • /
    • pp.100-106
    • /
    • 2013
  • 본 논문에서는 3개의 바퀴를 취하는 삼각형 구조의 전방향 청소로봇의 설계와 제어에 대해 소개한다. 시뮬레이션과 실험을 통해 제안하는 방법의 동작을 검증한다. 전방향 구조는 어느 방향으로 움직일 수 있다. 천장의 마커를 사용하는 StaGazer 센서를 사용하여 로봇의 위치와 헤딩각을 알아냈다. 추가로 초음파 센서를 부착하여 장애물을 검출할 수 있도록 하였다. 실험을 통해 시스템의 성능을 평가하였다.

자세 측정용 GPS/INS통합 시스템 개발 (A Development of Attitude GPS/INS Integration System)

  • 오천균;이재호;서흥석;성태경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.1984-1986
    • /
    • 2001
  • In order to provided continuous solutions, latest developing navigation systems tend to integrate GPS receiver with INS or DR. Using the GPS carrier-phase measurements, an attitude GPS receiver with three antennas obtain the 3-dimensional attitude such as roll, pitch, and heading as well as position and velocity. With these angle measurements, in the attitude GPS/INS integrated system, attitude or gyro errors can be directly compensated. In this paper, we develop an integrated navigation system that combines attitude GPS receiver with INS. The performance of real-time integrated navigation system is determined by not only the implements of integration filter but also the synchronization of measurements. To meet these real-time requirements, the navigation software is implemented in multi-tasking structure in this paper. We also employ time-synchronization technique in the multi-sensor fusion. Experimental results show that the performance of the attitude GPS/INS integrated system is consistent even when cycle-slip occurs in carrier-phase measurements.

  • PDF

위성항법 정보를 이용한 선박의 방위정보 향상에 관한 연구 (A Study on Improvement of the Ship's Bearing Information using CPS)

  • 고광섭;임봉택;최우영;최창묵
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2004년도 춘계종합학술대회
    • /
    • pp.101-105
    • /
    • 2004
  • 본 논문은 선박의 마그네틱 컴파스와 자이로 컴파스의 제한점을 극복하기 위하여 첨단 위성항법 방식이 GPS 시스템을 이용하여 고안된 GPS-Compass를 현재의 향상된 GPS 시스템 환경(2000. 5. 1 미국의 전격적인 SA 오차가 중지되어 정밀도가 7∼8배 향상된 환경)을 적용하여 모델을 재검토하고 실험을 통하여 함정에서의 제 2 방위센서 사용 가능 여부를 화인하기 위하여 연구하였다. 따라서 본 논문에서는 GPS-Compass 구성을 위한 이론식을 정립하고 GPS-Compass 모델을 확인하여 이론적 검증을 하였고, 두 대의 GPS 수신기로 실험장치를 구축하여 분석한 결과 선박의 제 2 방위센서로서의 사용 가능 여부를 확인하였다.

  • PDF

무인잠수정을 위한 효과적이고 유연한 설치 성능을 지닌 수중 레이저스캐너 개발 (Development of Underwater Laser Scanner with Efficient and Flexible Installation for Unmanned Underwater Vehicle)

  • 이영준;이윤건;채준보;최현택;여태경
    • 한국해양공학회지
    • /
    • 제32권6호
    • /
    • pp.511-517
    • /
    • 2018
  • This paper proposes a vision-based underwater laser scanner with separate structures for an underwater camera and a line laser projector. Because the two devices can be adaptively placed regardless of the features of the unmanned underwater vehicle (UUV), the scanner has significant advantages in relation to its availability and flexibility. Position calibration between the underwater camera and laser projector guarantees a 3D measuring performance with high accuracy. To verify the proposed underwater laser scanner, a test-bed system was manufactured, which consisted of the laser projector, camera, Pan&Tilt, and Attitude and Heading Reference System (AHRS). A camera-laser calibration test and simple 3D reconstruction test were performed in a water tank and the experimental results are reported.

Software Library Design for GNSS/INS Integrated Navigation Based on Multi-Sensor Information of Android Smartphone

  • Kim, Youngki;Fang, Tae Hyun;Seo, Kiyeol
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권4호
    • /
    • pp.279-286
    • /
    • 2022
  • In this paper, we designed a software library that produces integrated Global Navigation Satellite System (GNSS) / Inertial Navigation System (INS) navigation information using the raw measurements provided by the GNSS chipset, gyroscope, accelerometer and magnetometer embedded in android smartphone. Loosely coupled integration method was used to derive information of GNSS /INS integrated navigation. An application built in the designed library was developed and installed on the android smartphone. And we conducted field experiments. GNSS navigation messages were collected in the Radio Technical Commission for Maritime Service (RTCM 3.0) format by the Network Transport of RTCM via Internet Protocol (NTRIP). As a result of experiments, it was confirmed that design requirements were satisfied by deriving navigation such as three-dimensional position and speed, course over ground (COG), speed over ground (SOG), heading and protection level (PL) using the designed library. In addition, the results of this experiment are expected to be applicable to maritime navigation applications using smart device.