• Title/Summary/Keyword: head robot

Search Result 146, Processing Time 0.039 seconds

ICT Agriculture Support System for Chili Pepper Harvesting

  • Byun, Younghwan;Oh, Sechang;Choi, Min
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.629-638
    • /
    • 2020
  • In this paper, an unmanned automation system for harvesting chili peppers through image recognition in the color space is proposed. We developed a cutting-edge technology in terms of convergence between information and communication technology (ICT) and agriculture. Agriculture requires a lot of manpower and entails hard work by the laborers. In this study, we developed an autonomous application that can obtain the head coordinates of a chili pepper using image recognition based on the OpenCV library. As an alternative solution to labor shortages in rural areas, a robot-based chili pepper harvester is proposed as a convergence technology between ICT and agriculture requiring hard labor. Although agriculture is currently a very important industry for human workers, in the future, we expect robots to have the capability of harvesting chili peppers autonomously.

Lasers and Robots: Recent Developments in Transoral Laser and Transoral Robotic Surgery

  • Padalhin, Andrew Reyes
    • Medical Lasers
    • /
    • v.9 no.2
    • /
    • pp.103-109
    • /
    • 2020
  • Transoral microsurgery has come a long way as a go-to surgical intervention technique for head and neck cancers. This minimally invasive procedure had gained acceptance through comparative clinical studies against radical neck surgical procedures, radiotherapy, and chemotherapy. Laser technology has vastly improved the oncological outcomes of this procedure and brought about an appreciation of transoral laser surgery (TLM) as a mainstay for re-sectioning malignant tumors along the throat. As an established procedure, TLM has undergone several upgrades regarding the different energy devices used for cutting, ablation, and hemostasis. Continued advances in automation have eventually led to surgical robotics, resulting in the emergence of transoral robotic surgery (TORS) as a viable advanced alternative for TLM. Similarly, expansions and enhancements (image-based guidance, fluorescence spectroscopy, and advanced robotic system) have also been investigated as potential upgrades for TORS. This paper reviews a selection of publications on the significant technological advancements to TLM and TORS over the past five years.

Analysis on the Kinematics and Dynamics of Human Arm Movement Toward Upper Limb Exoskeleton Robot Control - Part 2: Combination of Kinematic and Dynamic Constraints (상지 외골격 로봇 제어를 위한 인체 팔 동작의 기구학 및 동역학적 분석 - 파트 2: 제한조건의 선형 결합)

  • Kim, Hyunchul;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.875-881
    • /
    • 2014
  • The redundancy resolution of the seven DOF (Degree of Freedom) upper limb exoskeleton is key to the synchronous motion between a robot and a human user. According to the seven DOF human arm model, positioning and orientating the wrist can be completed by multiple arm configurations that results in the non-unique solution to the inverse kinematics. This paper presents analysis on the kinematic and dynamic aspect of the human arm movement and its effect on the redundancy resolution of the seven DOF human arm model. The redundancy of the arm is expressed mathematically by defining the swivel angle. The final form of swivel angle can be represented as a linear combination of two different swivel angles achieved by optimizing two cost functions based on kinematic and dynamic criteria. The kinematic criterion is to maximize the projection of the longest principal axis of the manipulability ellipsoid of the human arm on the vector connecting the wrist and the virtual target on the head region. The dynamic criterion is to minimize the mechanical work done in the joint space for each of two consecutive points along the task space trajectory. The contribution of each criterion on the redundancy was verified by the post processing of experimental data collected with a motion capture system. Results indicate that the bimodal redundancy resolution approach improved the accuracy of the predicted swivel angle. Statistical testing of the dynamic constraint contribution shows that under moderate speeds and no load, the dynamic component of the human arm is not dominant, and it is enough to resolve the redundancy without dynamic constraint for the realtime application.

Analysis on Kinematics and Dynamics of Human Arm Movement Toward Upper Limb Exoskeleton Robot Control Part 1: System Model and Kinematic Constraint (상지 외골격 로봇 제어를 위한 인체 팔 동작의 기구학 및 동역학적 분석 - 파트 1: 시스템 모델 및 기구학적 제한)

  • Kim, Hyunchul;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1106-1114
    • /
    • 2012
  • To achieve synchronized motion between a wearable robot and a human user, the redundancy must be resolved in the same manner by both systems. According to the seven DOF (Degrees of Freedom) human arm model composed of the shoulder, elbow, and wrist joints, positioning and orientating the wrist in space is a task requiring only six DOFs. Due to this redundancy, a given task can be completed by multiple arm configurations, and thus there exists no unique mathematical solution to the inverse kinematics. This paper presents analysis on the kinematic and dynamic aspect of the human arm movement and their effect on the redundancy resolution of the human arm based on a seven DOF manipulator model. The redundancy of the arm is expressed mathematically by defining the swivel angle. The final form of swivel angle can be represented as a linear combination of two different swivel angles achieved by optimizing different cost functions based on kinematic and dynamic criteria. The kinematic criterion is to maximize the projection of the longest principal axis of the manipulability ellipsoid for the human arm on the vector connecting the wrist and the virtual target on the head region. The dynamic criterion is to minimize the mechanical work done in the joint space for each two consecutive points along the task space trajectory. As a first step, the redundancy based on the kinematic criterion will be thoroughly studied based on the motion capture data analysis. Experimental results indicate that by using the proposed redundancy resolution criterion in the kinematic level, error between the predicted and the actual swivel angle acquired from the motor control system is less than five degrees.

Robotized Filament Winding of Full Section Parts: Comparison Between Two Winding Trajectory Planning Rules

  • Sorrentino, L.;Polini, W.;Carrino, L.;Anamateros, E.;Paris, G.
    • Advanced Composite Materials
    • /
    • v.17 no.1
    • /
    • pp.1-23
    • /
    • 2008
  • Robotized filament winding technology involves a robot that winds a roving impregnated by resin on a die along the directions of stresses to which the work-piece is submitted in applications. The robot moves a deposition head along a winding trajectory in order to deposit roving. The trajectory planning is a very critical aspect of robotized filament winding technology, since it is responsible for both the tension constancy and the winding time. The present work shows two original rules to plan the winding trajectory of structural parts, whose shape is obtained by sweeping a full section around a 3D curve that must be closed and not crossing in order to assure a continuous winding. The first rule plans the winding trajectory by approximating the part 3D shape with straight lines; it is called the discretized rule. The second rule defines the winding trajectory simply by offsetting a 3D curve that reproduces the part 3D shape, of a defined distance; it is called the offset rule. The two rules have been compared in terms of roving tension and winding time. The present work shows how the offset rule enables achievement of both the required aims: to manufacture parts of high structural performances by keeping the tension on the roving near to the nominal value and to markedly decrease the winding time. This is the first step towards the optimization of the robotized filament winding technology.

Soft-$golf^{TM}$ Shaft Kick Point and Stiffness due to the Difference in Performance Analysis (소프트 골프 샤프트의 킥 포인트와 강성의 차이에 따른 성능 분석)

  • Oh, H.Y.;Yu, M.;Kim, S.H.;Jang, J.H.;Kim, N.G.;Kim, D.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.3
    • /
    • pp.227-233
    • /
    • 2010
  • This study analyzed performance according to kick point and stiffness of Soft-$golf^{TM}$ shaft. This research team developed soft-$golf^{TM}$ as a new fusion sports with similar motions with golf and it can be learned safely for all age groups in 2002. The head of Soft-$golf^{TM}$ club is made of zinc alloy and has a mesh or a grid structure, and shaft uses carbon graphite to reduce the total weight of the club. To improve carry distance and to assure consistency of a ball during Soft-$golf^{TM}$ swing, this study manufactured shaft with various kick points (low, middle and high) and stiffness (stiff, regular, lady, morelady) and analyzed a swing motion with characteristics of each shaft presented in a dynamic condition such as a ball's speed, a head's torsion angle and a ball's deviation with ProAnalyst program through a high-speed camera taking pictures using a swing machine robot system(Robo-7). From all of the results, this study determined an appropriate shaft of Soft-$golf^{TM}$.

Fixing unit and byte improvement of unit for cutting of projecting parts connects with interior part of drainpipe (하수관로 연결돌출부 절단기 유닛 고정유닛과 바이트 개선)

  • Kim, Jae-Yeol;Yoo, Sin;An, Jae-Sin;Kwak, Yi-Gu;Song, Kyung-Seok;Lee, Chang-Sun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1166-1169
    • /
    • 2003
  • The issue with the drainpipe now a day is that they are laid underground Causing us to perform additional work to repair, such as digging up the ground and peeling off the insulator that surrounds the pipe. And such series works are difficult that concession appears from government and municipal office. However, if we can save time and money. Performance of piping robot that we are studied in existing session through fixing unit and improvement of cutting byte shorten and wished to heighten work efficiency. This is why we aye trying to develop a unit that can cut up the projecting parts which connects with the interior part of the drainpipes.

  • PDF

A Study on HMD-AR based Industrial Training System for Live Machinery Operation

  • Lee, Beomhee;Choi, Jinyeong;Choi, Byunghoon;Lee, Jisung;Min, Byungjun;Cho, Juphil
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.65-70
    • /
    • 2018
  • As technological development is progressing recently, various technologies are actively being studied in the course of the 4th industrial revolution. So, even in the educational field, virtual reality and augmented reality technology are used in educational environments, but specialized additional equipment is required and the price is very expensive. Also, since a plurality of equipment are required for a large number of people, it is urgent to study the technology that can be effectively applied to the industrial education field. So in this paper, we propose an industrial training system for HMD-AR, MPEG-DASH and SOAP based HTTP based Live Machinery Operation using Smartphone to solve the problems of existing system.

A Study on T-Joint Welding by High Power Fiber Laser of SAPH Steel Plate for Automobile (자동차용 강판 SAPH의 고출력 파이버 레이저에 의한 T형상 용접특성에 관한 연구)

  • Oh, Yong-Seok;Yoo, Young-Tae;Shin, Ho-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.35-44
    • /
    • 2009
  • The purpose of this paper is to describe experimental results about the T-joint welding of the high power continuous wave (CW) fiber laser for SAPH steel plate for seat frame of car. The seat rail is a part of seat frame of cars. The assembling method is mostly fix up using a bolt and nut. But this assembling method has many demerits in productivity such as increasing work process and material cost. This paper presents an experimental study about Laser T-Joint weldability of seat rail. Laser welding has many advantages in lightness and saving material costs of seat frame. The laser beam was moved along the work pieces by six axis robot with process optical fiber. The laser beam is focused with a welding head within incident angle $15{\sim}45^{\circ}$ for the purpose of the T-joint welding through two side full penetration. The range of the root gap size is less than ${\leq}0.4mm$. Optical microscopy SEM were performed to observe the micro structures and determine the structures of welded zone.

Esthetic neck dissection using an endoscope via retroauricular incision: a report of two cases

  • Kim, Jae-Young;Cho, Hoon;Cha, In-Ho;Nam, Woong
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.40 no.1
    • /
    • pp.27-31
    • /
    • 2014
  • Various surgical techniques, such as endoscopic surgery and robotic surgery, are developed to optimize the esthetic outcome even in operations for malignancy. A modified face-lift or retroauricular approach are used to minimize postoperative scarring. Recently, robot-assisted surgery is being done in various fields and considered as favorable treatment method by many surgeons. However its high cost is a nonnegligible fraction for many patients. On the other hand, endoscopic surgery, which is cheaper than robotic surgery, is minimally invasive with contentable neck dissection. Although it is a difficult technique for a beginner surgeon due to its limited operation view, we suppose it as an alternative method for robotic surgery. Herein, we report two cases of endoscopic neck dissection via retroauricular incision with a discussion regarding the pros and cons of endoscopic neck dissection.