• Title/Summary/Keyword: hazardous material

Search Result 331, Processing Time 0.025 seconds

Advancement Plan on Hazardous Material Classification and Comparative Study of the Criteria in UN GHS and Safety Control of Dangerous Substances Act (UN GHS와 위험물안전관리법상의 위험물질 분류기준 비교 및 선진화 방안 연구)

  • Lee, Bong Woo;Lee, Kijun;Park, Jeongpil;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.42-50
    • /
    • 2013
  • With the rapid change of industry and the development of science and technology, more than 100,000 industrial chemicals are being used and 2,000 new materials are developed every year. Chemical products have had favorable influence on our daily life and contributed very much to the prosper of human culture. But some materials are inherently poisonous and dangerous. Korea ranks as the number 7 in world's chemical products market and the chemical sector is contributing to the economic revival through importing and exporting of the products. With the increasing domestic as well as international interests about REACH and GHS, the need for the effective and efficient chemical material management system is getting bigger and bigger. In this research, we compare the criteria in UN GHS and Safety Control of Dangerous Substances Act of Korea for the development of global standard test methods and the classification and labelling for the chemicals, and suggest an advancement plan for the introduction of the GHS in a building block approach. In addition, providing the harmonized information about chemical hazards is suggested for the elimination of international trade barriers for chemical industries.

Etching properties of $Na_{0.5}K_{0.5}NbO_2$ thin film using inductively coupled plasma (유도결합 플라즈마를 이용한 $Na_{0.5}K_{0.5}NbO_2$ 박막의 식각 특성)

  • Kim, Gwan-Ha;Kim, Kyoung-Tae;Kim, Jong-Gyu;Woo, Jong-Chang;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.116-116
    • /
    • 2007
  • 21 세기에 접어들면서 인터넷을 통한 정보 통신의 발달과 개인 휴대용 이동 통신기기의 활발한 보급에 따라 휴대형 전자기기들의 소형화와 고성능화로 나아가고 있다. 이러한 전자기기에 사용될 IC의 내장 메모리 또한 집적화 및 고속화, 저 전력화가 이루어져야 한다. 이러한 전자기기들에 필수적인 압전 세라믹스 부품 중 압전 부저 및 기타 음향 부품등을 각종 전자기기와 무선 전화기에 채택함으로써 압전 부품에 대한 수요와 생산이 계속 증가할 것으로 전망된다. 이처럼 압전 세라믹스를 이용한 그 응용 범위는 대단히 방대하며, 현재 모든 압전 부품들은 PZT 계열 재료로 만들어지고 있고, 차후 모두 비납계열 재료로 대체될 것이 확실시된다. Pb의 환경오염은 이미 오래전부터 큰 문제점으로 인식되고 있었으며 그 일례로 미국의 캘리포니아 주에서는 1986년부터 약 800종의 유해물질, 그 중에서도 Pb 사용을 300ppm 이하로 규제하는 Proposition 65를 제정하여 실행하고 있다. 그리고 2003년 2월에 EU (European Union) 에서 발표한 전자산업에 관한 규제 사항중 하나인 위험물질 사용에 관한 지칭 (Restriction of Hazardous Substance, RoHS) 에 의하면, 2006 년 7월부터 전기 전자 제품에 있어서 위험 물질인 Pb을 포함한 중금속 물질(카드늄, 수은, 6가 크롬, 브롬계 난연재)의 사용을 금지한다고 발표하였다. 비록 전자세라믹 부품에 함유된 Pb는 예외 사항으로 두었지만 대체 가능한 물질이 개발되면 전자세라믹 부품에서도 Pb의 사용을 금지한다고 규정하였다. 더욱이 일본은 2005 년부터 Pb 사용을 금지시켰다. 이와 같이 Pb가 환경에 미치는 영향 때문에 비납계 강유전 물질 및 압전 세라믹스 재료에 대한 연구가 전 세계적으로 활발히 진행되고 있다. 본 연구에서는 비납계 강유전체의 patterning을 위해서, NKN 박막을 고밀도 플라즈마원인 ICP를 이용하여 식각 mechanism을 연구하고, 식각변수에 따른 식각 공정을 최적화에 대하여 연구하였다. 가스 혼합비에 따라 식각 할때 700 W의 RF 전력과 - 150 V의 직류 바이어스 전압을 인가하였고, 공정 압력은 2 Pa, 기판 온도는 $23^{\circ}C$로 고정하였다. 식각 속도는 Tencor사의 Alpha-step 500을 이용하여 측정되었으며 식각 시 NKN 박막 표면과 라디칼과의 화학적인 반응을 분석하고 식각 메커니즘을 규명하기 위하여 XPS(x-ray photoelectron spectroscopy)를 사용하였다.

  • PDF

A Study on Measures to Prevent Leakage of Process Fluid from the VCR Fitting used in the Semiconductor Manufacturing Process (반도체 제조 공정에서 사용되는 이송배관 연결부위(VCR Fitting)로부터 공정유체 누출사고 예방 대책에 관한 연구)

  • Dae Joon Lee;Sang Ryung Kim;Sang Gil Kim;Chung Sang Kang;Joon Won Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.79-85
    • /
    • 2023
  • Recently, in the semiconductor process, large companies are seeking process changes from memory semiconductors to the foundry due to the increase in demand due to the 4th industry. industry is expanding. The characteristics of special gases and precursors, which are raw materials used to produce these semiconductor chips, are toxic, pyrophoric, inflammable, and corrosive. These semiconductor raw materials are operated in a closed system and do not leak to the outside during normal times, but when leaked, they spread to the inside of the gas box, and when proper ventilation is not provided inside the gas box, they spread to the outside, causing fires, explosions, or toxic substances. It can lead to major accidents such as leakage. Recently, there have been cases of accidents in which hazardous materials leaked from the closed system of the semi conductor process and spread to the inside and outside of the gas box. . In this study, we propose preventive measures based on the case of an accident in which raw material leaked from the VCR fitting, which is the connection part of the semiconductor raw material transfer pipe, and spread to the outside of the gas box.

Fundamental Properties of Low Strength Concrete Mixture with Blast Furnace Slag and Sewage Sludge (고로슬래그미분말 및 하수슬러지를 활용한 저강도 콘크리트의 기초적 물성)

  • Kwon, Chil Woo;Lim, Nam Gi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.136-144
    • /
    • 2013
  • In this study, in order to establish a plan that will enable safe use of renewable resources such as diverse industrial by-products and urban recycled materials, we conducted experiments that focused on flow, bleeding, compressive strength and environmental pollution evaluation to evaluate the material properties of low strength concrete using BFS and SS. In the case of low strength concrete using BFS and SS, blending of at least BFS 6000 within a 30% range regardless of the type of sand used was found to be the most effective approach for improving the workability by securing the minimum unit quantity of water, restraining the bleeding ratio and establishing compressive strength by taking account of the applicability at the work site. In particular, in view of the efficient use of SS, the optimal mixing condition was found to be the mixing of BFS 8000 with in the 30% range, not only for improving the workability restraining the bleeding ratio and establishing the compressive strength but also for application to the work site. Further, the results of tests on hazardous substance content and those of elution tests conducted on soil cement using SS indicated that all values satisfied the environmental standards without any harmful effects on the surrounding environment.

Research on the Working Environment and Personal Protective Equipment of Korean Native Cattle Raising Farmers (한우 사육자 작업환경 및 작업복과 보호구 착용 실태 분석)

  • Kim, Insoo;Lee, Kyung-Suk;Chae, Hye-Seon;Kim, Kyungsu;Choi, Dong-Phil;Kim, Hyo-Cher
    • The Korean Journal of Community Living Science
    • /
    • v.27 no.4
    • /
    • pp.891-906
    • /
    • 2016
  • This study examined the working site environment of Korean native cattle raising farmers and their actual condition of wearing personal protective equipment as part of preventing disasters during agricultural work. To this end, 160 Korean cattle raising farmers were surveyed and a site visit was performed on 10 farms. According to an examination of the cattle breeding environment, the major harmful factors were in the following order: fine dust (12.8%), organic feed dust (10.3%), contact with cattle (9.7%), manure (8.2%), germs and viruses (8.1%), harmful gases (7.4), contact with obstacles (6.7), and temperature (6.6%). The current status of the rate of wearing protection was in the order of gloves (20.9%), working hats (19.7%), boots (19.6%), masks (10.9%), protective clothing (8.9%), and specialized working clothing (6.6%). Nevertheless, most Korean cattle raising farmers recognized the risks when they did not wear protective equipment and the need for wearing protectors, but they mostly did not wear personal protective equipment due to a lack of knowledge on the selection of appropriate personal protective equipment and the discomfort they experience when they put on protectors. Even when they put on protective equipment, 38% was inappropriate for the farming work environment. Given the research results, improvements on and the development of specialized working clothing and personal protective equipment to protect farmers from harmful and dangerous materials from the cattle nurturing environment is necessary. Overall, based on the study data, objectified data collection, a determination of the necessary performance elements of personal protective equipment, and R&D will be needed through an on-site current status investigation.

Evaluation of the HACCP System on Microbiological Hazard during Dressing Production (드레싱 제조업체의 HACCP 시스템 적용을 위한 미생물학적 위해도 평가)

  • Kwon, Sang-Chul
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.3
    • /
    • pp.457-463
    • /
    • 2013
  • The purpose of this study was to apply the Hazard Analysis Critical Control Point (HACCP) system to the production of dressing. The hazard analysis examined the main materials, industrial water, microbial evaluation, and airborne microorganisms of each working area, as well as the pathogenic microbial contamination risk. The survey was conducted at SJ Company in Jincheon (Chungchengbuk-do), Korea for 30 days from April 1, 2012 to April 30, 2012. The results showed that raw material microorganisms had a total plate count in industrial water below $3.00{\times}10$ CFU/mL in working room I, working room II, the packing room, washing water, and the inspection room for five times in each place. During dressing production (including heat treatment and mixing), general bacteria were detected at an average of $3{\times}10$ CFU/mL, but yeast, mold, and pathogenic bacteria were not detected. Airborne microbiological evaluation (for total plate count, yeast, and mold) found levels below the legal limit at each working area. While workers were positive for microbes in total plate counts, coliform and Staphylococcus aureus were not detected. In conclusion, standards for hygienic management should be established to prevent and decrease hazards, such as general bacteria and pathogenic microorganisms (for example, E. coli, B. cereus, Listeria spp, Salmonella spp, Staph. aureus, Clostridium perfringens, yeast, and mold), and to found critical limits for microorganisms with an HACCP system.

A Study on the Efficiency Estimation of Halogen free Fire Resistance Cable (저독성 내화전선 케이블의 성능평가에 관한 연구)

  • 윤헌주;홍진웅;유동일;윤재선;곽동일
    • Fire Science and Engineering
    • /
    • v.16 no.1
    • /
    • pp.18-23
    • /
    • 2002
  • Efficiency estimation of toxicity free resistance cable experiments were conducts to understand toxicity free fire ersistance polyolefin insulation material and smoke density characteristic and combustion gas corrosion analysis. A main cause of fire-growth and generating toxic gas when it burns, should be dealt with great care in life safety design. Similar patterned fire incidents such as, Inchon Live-Hof Pub Restaurant as, Sea-land Children Resort have proven that serious loss of lives were caused by hazardous gas generated fire resistance cable materials. In this paper, Referenced documents were ASTM E662 standard test method for specific Ds genalated by solid materials. The furnace control system shall maintain the required irradiance level under steady-state condition with the chamber door closed of 2.5$\pm40.04〔w/$\textrm{cm}^2$〕for 20 min. According to the results of the smoke density analysis of NFR-8 and FR-PVC the highest decomposition flaming smoke density range of NFR-8 and FR-PVC were 25.2 to 37.5 and 51.1 respectively. Nonflaming smoke density range of NFR-8 and FR-PVC were 100.4 to 112.2 and 126.5 to 398.8. Also, the fire gases was occurred carbon monoxide and decomposition than in polyolefin due to incomplete combustion of PVC which has high content of carbon in chemical compound.

Stabilization of Heavy Metal and CO2 Sequestration in Industrial Solid Waste Incineration Ash by Accelerated Carbonation (산업폐기물의 가속 탄산화법을 이용한 CO2 고용화 및 중금속 안정화 특성 연구)

  • Jung, Seong-Myung;Nam, Seong-Young;Um, Nam-Il;Seo, Joobeom;Yoo, Kwang-Suk;Ohm, Tae-In;Ahn, Ji-Whan
    • Mineral and Industry
    • /
    • v.26
    • /
    • pp.1-12
    • /
    • 2013
  • In this study, an accelerated carbonation process was applied to stabilize hazardous heavy metals of industrial solid waste incineration (ISWI) bottom ash and fly ash, and to reduce $CO_2$ emissions. The most commonly used method to stabilize heavy metals is accelerated carbonation using a high water-to-solid ratio including oxidation and carbonation reactions as well as neutralization of the pH, dissolution, and precipitation and sorption. This process has been recognized as having a significant effect on the leaching of heavy metals in alkaline materials such as ISWI ash. The accelerated carbonation process with $CO_2$ absorption was investigated to confirm the leaching behavior of heavy metals contained in ISWI ash including fly and bottom ash. Only the temperature of the chamber at atmospheric pressure was varied and the $CO_2$ concentration was kept constant at 99% while the water-to-solid ratio (L/S) was set at 0.3 and $3.0dm^3/kg$. In the result, the concentration of leached heavy metals and pH value decreased with increasing carbonation reaction time whereas the bottom ash showed no effect. The mechanism of heavy metal-stabilization is supported by two findings during the carbonation reaction. First, the carbonation reaction is sufficient to decrease the pH and to form an insoluble heavy metal-material that contributes to a reduction of the leaching. Second, the adsorbent compound in the bottom ash controls the leaching of heavy metals; the calcite formed by the carbonation reaction has high affinity of heavy metals. In addition, approximately 5 kg/ton and 27 kg/ton $CO_2$ were sequestrated in ISWI bottom ash and fly ash after the carbonation reaction, respectively.

  • PDF

A Study of Frangibility of 9MM Bullet Related to Material Composition and Sinter Condition (합금 조성 및 소결 조건에 따른 9MM 탄자의 파쇄성에 관한 연구)

  • Kim, Bo-Ram;Seo, Jung-Hwa;Jung, Hee-Chur;Kim, Kyu-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.615-622
    • /
    • 2020
  • Frangible bullets, which are shredded after impact on a target, reduce the possibility of both ricochet and unexpected injury in shooting training and in mission acts in dams, nuclear power plants, and cultural properties. Reducing the levels of hazardous materials in shooting ranges, such as lead, has become an important agenda for the government and environmental groups. In this study, the shape of a frangible bullet was designed for efficient shredding, and the safety and reliability were confirmed by actual firing under different process conditions. In addition, the physical characteristics, such as compaction pressure, density, and frangibility of each process, were compared by analyzing the microstructure of the sintered frangible bullet. The experiment revealed the smallest fragmentation after impact on the target under the following conditions: Cu-Sn 85:15; sintering temperature, 600℃; sintering time, one hour. Further development of the process conditions and experimental methods will contribute to the performance and environmental improvement of a frangible bullet.

Characterization of Leaching Behaviour of Recycled Concrete for Environmental Assessment (용출특성규명을 통한 재생골재 환경성 평가)

  • Kang, S.H.;Lee, S.H.;Kwak, K.S.;Lee, J.Y.;Chung, M.K.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.293-301
    • /
    • 2005
  • We conducted several different leaching experiments for assessing the potential environmental risk when utilizing recycled concrete for stabilizing bridge pier. The methods include continuous batch leaching test (DIN 38414-S4), availability test (NEN 7341), pH-stat test (CEN/TC 292/WG6) and tank diffusion test (NEN 7345). The concentration ranges vary depending on the testing method. Nearly all the trace elements were low, some elements recording under detection limit. The maximum concentrations for trace elements leached throughout the whole tests are (as mg/L); Cd (0.029), Cu (0.437), Pb (0.14), Ni, Zn (0.95), Hg (0.005). Although the testing methods we used in this study are much more rigorous than other commonly adapted method including TCLP and domestic testing method for solid waste, the trace elemental concentrations are under the criteria for hazardous material set by the TCLP and domestic method. The result seems to suggest that applying the recycled concrete on stream water will be accepatable practice as for as trace elements are concerned. However, the influence of inorganics such as Ca, Mg, Ni and $SO_4^{2-}$ on aquatic ecology should be further examined.