• Title/Summary/Keyword: hazardous gas release

Search Result 33, Processing Time 0.029 seconds

A Study on the Safety Distance of Benzene and Acrylonitrile Releases in Sccordance with Dike and Hole Size (벤젠 및 아크릴로나이트릴 누출시 방류벽 유무 및 누출공에 따른 피해 영향범위 산정에 관한 연구)

  • Kawg, Youngmin;Oak, Jaemin;Yoon, Sukyoung;Jung, Seungho
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.1
    • /
    • pp.18-25
    • /
    • 2018
  • As the industries become more developed, the amounts of hazardous materials have been increased. Because of that, the possibility of accidents in plants is expected to increase. Especially, the dispersions of toxic materials cause serious effect to human life and environment, So it is very important to confirm safety distance of discharge accident. For this paper, we proposed new algorithms for toxic liquid, such as benzene and acrylonitrile. and using this argorithm, we are going to predict safety distance. The scenario of accidental release was assumed to be the release of entire quantity in 10 minutes is defined as worst-case scenario and Instantaneous release. Also the release from a partial rupture of line is used as an alternative case scenarios as NICS(National Institute of Chemical Safety) guidelines. Using ALOHA program and the algorithm for liquid toxic materials and suggested the graph, as well as correlated equations which can utilize emergency responders.

A study on the Internal Flow Analysis of Gas Cylinder Cabinet for Specialty Gas of Semiconductor (반도체용 특수가스 공급을 위한 가스캐비닛 내부 유동해석에 관한 연구)

  • Kim, Jung-Duck;Han, Seung-A;Yang, Won-Baek;Rhim, Jong-Guk
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.5
    • /
    • pp.74-81
    • /
    • 2020
  • In general, when manufacturing a semiconductor, a number of hazardous and dangerous substances such as flammability, toxic, and corrosiveness are used. In particular, semiconductors are manufactured using specialty gas in processes such as CVD and etching. The specialty gas is filled in a container in the state of compressed or liquefied gas, and a gas cylinder cabinet is used as a facility for supplying this specialty gas to the semiconductor manufacturing process. When a accident occurs in the gas supply system, gas is released through a pressure release device installed in the gas cylinder to secure the safety of the supply system. In this case, the gas released inside the gas cabinet, there is a risk of leaking to the outside. After that, by analyzing the gas flow in the gas cabinet, it is intended to identify the risk associated with leak and to provide measures to prevent accidents.

Measures to Prevent Recurrence through the Analysis of an Explosion Case at Ammonia Refrigeration Facilities (암모니아 냉동시설의 폭발사례 분석을 통한 재발방지대책)

  • Ryu, Young-Jo;Lee, Min-Kyung;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.3
    • /
    • pp.38-45
    • /
    • 2016
  • In this study, we found that the release and dispersion of ammonia can create hazardous atmospheres using FLACS software. In General, ventilation or gas detector installations are recommended as preventive measures to control explosion incidents. However, the ventilation installations cannot be applicable to the refrigeration facility that uses ammonia as refrigerating medium, because the freezing room should be sealed. From the accident investigation of the explosion case, we suggested that all electronic devices were needed to be switched by explosion proof devices, and communication facility was also needed to be installed to announce to all employees within a building in case alert condition like ammonia releases occurred.

Study on the Reduction of Mercury Emission from Flue Gas in Thermal Power Plants (화력발전소 배가스 수은 배출 저감에 관한 연구)

  • 장경룡;백점인;안희수;양완섭;이시훈
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.147-148
    • /
    • 2003
  • 미국을 중심으로 HAPs(Hazardous Air Pollutants: 특정대기유해물질)의 유해성이 확인되면서 TRI(Toxics Release Inventory: 유해화학물질 배출공개제도)를 제도화하여 배출 원 관리를 통해 간접적으로 배출량을 줄이는 한편, 직접적으로는 규제 기준을 마련하여 저감 기술개발을 유도하고 있다. 특히 HAPs에 포함된 물질들 가운데 수은은 환경에서 메칠수은으로 변하여 유독성이 한층 높아지고, 먹이 연쇄과정을 통해 농축되어 가장 관리가 시급히 요구되는 물질로 대두되었다. 이에 따라 미국에서는 의회를 중심으로 배출 규제에 대한 일정을 확정하고, 적정한 규제농도가 정해지는 대로 이를 시행할 예정으로 있다. (중략)

  • PDF

A Study on Injection and Combustion of D.I. Diesel Engine with Electronic-hydraulic Fuel Injection System (전자유압식 분사계를 갖는 D.I. 디젤기관의 분사 및 연소에 관한 연구)

  • Kim, Hyun-Gu;Ra, Jin-Hong;Ahn, Soo-Kil
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.9 no.1
    • /
    • pp.83-97
    • /
    • 1997
  • Diesel engine is widely used for ship and industry source of power because of its high thermal efficiency and reliability and durability. However it lead to air pollution due to exhaust gas, and it is important to develop diesel engine of lower air-pollution to decrease the hazardous exhaust gas emissions. As one of the ways, the study for practically using the high pressure of fuel injection and variable injection timing system is being processing. The high pressure injection, which is said to be an effective means for reducing both NOx and particulate emissions, and great improvements in combustion characteristics have been reported by many researchers. In this study, electronic-hydraulic fuel injection system and hydraulic fuel injector system have been applied to the D.I. test engine for high pressure injection and variable injection timing. The injection pressure and injection rate depending upon accumulator pressure were measured with strain gage and Bosch injection rate measuring system before fitting the system into test engine, and analyzed the characteristics of the injection system. The combustion characteristics with this injection system has been analyzed with data concerning heat release rate, pressure rising rate, ignition point, ignition delay and maximum pressure value.

  • PDF

Large Scale Experiments Simulating Hydrogen Distribution in a Spent Fuel Pool Building During a Hypothetical Fuel Uncovery Accident Scenario

  • Mignot, Guillaume;Paranjape, Sidharth;Paladino, Domenico;Jaeckel, Bernd;Rydl, Adolf
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.881-892
    • /
    • 2016
  • Following the Fukushima accident and its extended station blackout, attention was brought to the importance of the spent fuel pools' (SFPs) behavior in case of a prolonged loss of the cooling system. Since then, many analytical works have been performed to estimate the timing of hypothetical fuel uncovery for various SFP types. Experimentally, however, little was done to investigate issues related to the formation of a flammable gas mixture, distribution, and stratification in the SFP building itself and to some extent assess the capability for the code to correctly predict it. This paper presents the main outcomes of the Experiments on Spent Fuel Pool (ESFP) project carried out under the auspices of Swissnuclear (Framework 2012-2013) in the PANDA facility at the Paul Scherrer Institut in Switzerland. It consists of an experimental investigation focused on hydrogen concentration build-up into a SFP building during a predefined scaled scenario for different venting positions. Tests follow a two-phase scenario. Initially steam is released to mimic the boiling of the pool followed by a helium/steam mixture release to simulate the deterioration of the oxidizing spent fuel. Results shows that while the SFP building would mainly be inerted by the presence of a high concentration of steam, the volume located below the level of the pool in adjacent rooms would maintain a high air content. The interface of the two-gas mixture presents the highest risk of flammability. Additionally, it was observed that the gas mixture could become stagnant leading locally to high hydrogen concentration while steam condenses. Overall, the experiments provide relevant information for the potentially hazardous gas distribution formed in the SFP building and hints on accident management and on eventual retrofitting measures to be implemented in the SFP building.

A Study on the Examination of Explosion Hazardous Area Applying Ventilation and Dilution (환기 및 희석을 적용한 폭발위험장소 검토에 관한 연구)

  • kim, Nam Suk;Lim, Jae Geun;Woo, In Sung
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.4
    • /
    • pp.27-31
    • /
    • 2018
  • Classification of explosion hazard areas is very important in terms of cost and safety in the workplace handling flammable materials. This is because the radius of the hazardous area determines whether or not the explosion-proof equipment is installed in the electrical machinery and apparatus. From November 6, 2017, KS C IEC-60079-10-1: 2015 will be issued and applied as a new standard. It is important to understand and apply the difference between the existing standard and the new standard. Leakage coefficients and compression factors were added to the leakage calculation formula, and the formula of evaporation pool leakage, application of leakage ball size, and shape of explosion hazard area were applied. The range of the safety factor K has also been changed. Also, in the radius of the hazardous area, the existing standard applies the number of ventilation to the virtual volume, but the revised standard is calculated by using the leakage characteristic value. In this study, we investigated the differences from existing standards in terms of ventilation and dilution and examined the effect on the radius of the hazard area. Comparisons and analyzes were carried out by applying revised standards to workplaces where existing explosion hazard locations were selected. The results showed that even if the ventilation and dilution were successful, the risk radius was not substantially affected.

A Study on Improvement of Safety Management in Subcontractor through Process Safety Management (공정안전관리를 통한 도급업체 안전관리 강화에 관한 연구)

  • Lee, Joo Yeob;Lee, Keun Won;Kim, Kyu-Jung;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.15-21
    • /
    • 2015
  • Looking at the large and small fire, explosion, or release accidents that occurred recently, we can see that the accident of subcontractor workers has been increased in the contractor workplace while a harmful or dangerous maintenance works. In this study, the actual status of subcontractor's safety management was examined by using the questionnaire to the contractor who submitted the process safety report. In order to improve the safety management of subcontractors, the responsibility and rational role-sharing between the contractors and subcontractors were reviewed. Also, Providing safety and health information and worker protection measures during maintenance were investigated. The results of this study can be used to help strengthen and improvement safety management of the subcontractor at the time of a hazardous or dangerous works. In addition, it will be utilized to reduce industrial accidents and to build mutual cooperation relationship between contractor and subcontractor.

Advanced Optimization of Reliability Based on Cost Factor and Deploying On-Line Safety Instrumented System Supporting Tool (비용 요소에 근거한 신뢰도 최적화 및 On-Line SIS 지원 도구 연구)

  • Lulu, Addis;Park, Myeongnam;Kim, Hyunseung;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.2
    • /
    • pp.32-40
    • /
    • 2017
  • Safety Instrumented Systems (SIS) have wide application area. They are of vital importance at process plants to detect the onset of hazardous events, for instance, a release of some hazardous material, and for mitigating their consequences to humans, material assets, and the environment. The integrated safety systems, where electrical, electronic, and/or programmable electronic (E/E/PE) devices interact with mechanical, pneumatic, and hydraulic systems are governed by international safety standards like IEC 61508. IEC 61508 organises its requirements according to a Safety Life Cycle (SLC). Fulfilling these requirements following the SLC can be complex without the aid of SIS supporting tools. This paper presents simple SIS support tool which can greatly help the user to implement the design phase of the safety lifecycle. This tool is modelled in the form of Android application which can be integrated with a Web-based data reading and modifying system. This tool can reduce the computation time spent on the design phase of the SLC and reduce the possible errors which can arise in the process. In addition, this paper presents an optimization approach to SISs based on cost measures. The multi-objective genetic algorithm has been used for the optimization to search for the best combinations of solutions without enumeration of all the solution space.

Study on the Consequence Effect Analysis & Process Hazard Review at Gas Release from Hydrogen Fluoride Storage Tank (최근 불산 저장탱크에서의 가스 누출시 공정위험 및 결과영향 분석)

  • Ko, JaeSun
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.449-461
    • /
    • 2013
  • As the hydrofluoric acid leak in Gumi-si, Gyeongsangbuk-do or hydrochloric acid leak in Ulsan, Gyeongsangnam-do demonstrated, chemical related accidents are mostly caused by large amounts of volatile toxic substances leaking due to the damages of storage tank or pipe lines of transporter. Safety assessment is the most important concern because such toxic material accidents cause human and material damages to the environment and atmosphere of the surrounding area. Therefore, in this study, a hydrofluoric acid leaked from a storage tank was selected as the study example to simulate the leaked substance diffusing into the atmosphere and result analysis was performed through the numerical Analysis and diffusion simulation of ALOHA(Areal Location of Hazardous Atmospheres). the results of a qualitative evaluation of HAZOP (Hazard Operability)was looked at to find that the flange leak, operation delay due to leakage of the valve and the hose, and toxic gas leak were danger factors. Possibility of fire from temperature, pressure and corrosion, nitrogen supply overpressure and toxic leak from internal corrosion of tank or pipe joints were also found to be high. ALOHA resulting effects were a little different depending on the input data of Dense Gas Model, however, the wind direction and speed, rather than atmospheric stability, played bigger role. Higher wind speed affected the diffusion of contaminant. In term of the diffusion concentration, both liquid and gas leaks resulted in almost the same $LC_{50}$ and ALOHA AEGL-3(Acute Exposure Guidline Level) values. Each scenarios showed almost identical results in ALOHA model. Therefore, a buffer distance of toxic gas can be determined by comparing the numerical analysis and the diffusion concentration to the IDLH(Immediately Dangerous to Life and Health). Such study will help perform the risk assessment of toxic leak more efficiently and be utilized in establishing community emergency response system properly.