• Title/Summary/Keyword: hazardous gas

Search Result 350, Processing Time 0.023 seconds

A Study on Classification of Explosion Hazardous Area for Facilities using Lighter-than-Air Gases (공기보다 가벼운 가스 사용시설의 폭발위험장소 설정방안에 대한 연구)

  • Yim, Ji-Pyo;Chung, Chang-Bock
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.2
    • /
    • pp.24-30
    • /
    • 2014
  • There have been controversies over whether explosion hazardous area(EHA) should be classified for facilities which use lighter-than-air gases such as city gas, hydrogen and ammonia. Two view points are confronting each other: an economic piont of view that these gases are lighter than air and disperse rapidly, hence do not form EHA upon release into the atmosphere, and a safety point of view that they are also inflammable gases, hence can form EHA although the extent is limited compared to heavy gases. But various standards such as KS, IEC, API, NFPA do not exclude light gases when classifying EHA and present examples of EHA for light gas facilities. This study calculates EHA using the hypothetical volume in the IEC code where the hole sizes required for the calculation were selected according to various nominal pipe sizes in such a way to conform to the EHA data in the API code and HSL. Then, 25 leakage scenarios were suggested for 5 different pipe sizes and 5 operating pressures that cover typical operating conditions of light gas facilities. The EHA for the minimum leakage scenario(25 mm pipe, 0.01MPa pressure) was found to correspond to a hypothetical volume larger than 0.1 $m^3$(medium-level ventilation). This confirms the validity of classifying EHA for facilities using lighter-than-air gases. Finally, a computer program called HACPL was developed for easy use by light gas facilities that classifies EHA according to operating pressures and pipe sizes.

A Study on Development and Construction Methods of the Inorganic Floor Finishing Material of Hazardous Material Storage Facilities (위험물 저장시설의 무기질 바닥마감재와 이를 이용한 시공방법에 관한 연구)

  • Oh, Dong-Seok;Yu, Chul-Hee;Kim, Byung-Duk;Kim, Heum;Park, Sang-Min
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.4
    • /
    • pp.35-43
    • /
    • 2014
  • Usage of the inorganic floor finishing material can be advantageous to overcome some problems of traditional organic-based floor finishing material used for hazardous material storage facilities. A spark can be produced by physical impact between the flooring and the flooring disposal equipment while removing the existing flooring. In order to prevent a fire hazard, which may be caused the spark, it is feasible that a construction can be implemented without removing the existing flooring. Moreover, the top coating material containing an antistatic agent is effective to prevent secondary damage caused by static electricity after finishing the construction of the flooring. Therefore, the inorganic floor finishing material of the this study is expected to be beneficial for safety management and economical aspect for inspectors.

Prediction of Explosion Risk for Natural Gas Facilities using Computational Fluid Dynamics (CFD) (전산유체역학시뮬레이션을 이용한 도시가스 설비의 폭발위험성 예측)

  • Han, Sangil;Lee, Dongwook;Hwang, Kyu-Suk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.606-611
    • /
    • 2018
  • City natural gas is classified flammable hazardous gas and should be secured according to explosion risk assessment determined by Industrial Standard KS C IEC. In this study, leak size, ventilation grade and effectiveness were adopted to the KS C IEC for risk assessment in natural gas supply system. To evaluate the applicability of the computational fluid dynamics (CFD), the risk assessment was studied for four different conditions using hypothetical volume($V_z$) valuesfrom gas leak experiments, KS C IEC calculation, and CFD simulation.

Design Parameters Estimations for Bubble Column Reactors to Remove Toxic Gases (독성가스 제거용 기포탑 반응기의 설계기법)

  • Oh, Junghwan;Hong, Min Sun
    • Korean Journal of Hazardous Materials
    • /
    • v.6 no.2
    • /
    • pp.95-104
    • /
    • 2018
  • Gas-liquid bubble column reactors are extensively used in industrial processes. A detailed knowledge of bubble size distribution is needed for determining the mass transfer in gas-liquid film. Experimental data on bubble size distribution and liquid-side mass transfer coefficient($k_L$) were used to calculate the estimated time to saturation in bubble column reactor. Also, the gas flux was evaluated to the liquid-side mass transfer coefficient($k_L$) and solubility data for hydrogen sulfide($H_2S$) and chlorine($Cl_2$) absorption into water. Simulation results show that $H_2S$ absorption time to 50 % of saturation concentrations are 611 sec and 1,329 sec when bubble diameters are 0.5 mm and 4.5 mm, while absorbing 1 % $H_2S$ gas. In case of $Cl_2$, absorption time range 657 to 1,400 sec when bubble size range 0.5 mm to 4.5 mm, while absorbing 1 % $Cl_2$ gas. Calculated simulation results can be used in the design of emergency relief bubble reactors.

Deep Learning(CNN) based Worker Detection on Infrared Radiation Image Analysis (딥러닝(CNN)기반 저해상도 IR이미지 분석을 통한 작업자 인식)

  • Oh, Wonsik;Lee, Ugwiyeon;Oh, Jeongseok
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.8-15
    • /
    • 2018
  • worker-centered safety management for hazardous areas in the plant is required. The causes of gas accidents in the past five years are closely related to the behavior of the operator, such as careless handling of the user, careless handling of the suppliers, and intentional, as well as equipment failure and accident of thought. In order to prevent such accidents, real-time monitoring of hazardous areas in the plant is required. However, when installing a camera in a work space for real-time monitoring, problems such as human rights abuse occur. In order to prevent this, an infrared camera with low resolution with low exposure of the operator is used. In real-time monitoring, image analysis is performed using CNN algorithm, not human, to prevent human rights violation.

A Study on the Monitoring Criteria of Disaster Signs for Early-warning System based on Multiple Hazardous Gas Sensor (복합 유해 가스 센서 기반의 조기 경보 시스템을 위한 재난 전조 감시 기준에 관한 연구)

  • Han, Kyusang;Park, Sosoon;Yoon, En Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.2
    • /
    • pp.28-35
    • /
    • 2013
  • The number of large and complex buildings is growing and they are usually concentrated in metropolitan cities. There is a possibility in such buildings that a small accident can expand to a massive disaster since their scale and complexity. To deal with this issue, a research on gas sensors which can detect multiple gases and early-warning systems has been conducted. Proper criteria or standards are necessary for effective application and operation of such sensor-based disaster monitoring system. In this study, we have proposed the alarm criteria of concentration of hazardous gases for the detection and the alarm release. For each alarm level, systematic disaster response plans consist of responsive actions and information delivery have been prepared. These disaster monitoring criteria can help the detection of hazardous gas-related disaster in the early stage of accident and the provision of appropriate emergency responses.

A Study on Determination of Range of Hazardous Area Caused by the Secondary Grade of Release of Vapor Substances Considering Material Characteristic and Operating Condition (물질특성 및 운전조건을 고려한 증기상 물질의 2차 누출에 따른 폭발위험장소 범위 선정에 관한 연구)

  • Seo, Minsu;Kim, Kisug;Hwang, Yongwoo;Chon, Youngwoo
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.4
    • /
    • pp.13-26
    • /
    • 2018
  • Currently, local regulations, such as KS Code, do not clearly specify how to calculate the range of hazardous area, so the dispersion modeling program should be used to select dispersion. The purpose of this study is to present a methodology of determining the range of hazardous area which is simpler and more reasonable than modelling by using representative materials and process conditions. Based on domestic and overseas regulations that are currently in effect, variables affecting distance to LFL(Lower Flammable Limit) were selected. A total of 16 flammable substances were modelled for substance variables, process conditions variables, and weather conditions variables, and the statistical analysis selected the variables that affect them. Using the selected variables, a three-step classification method was prepared to select the range of locations subject to explosion hazard.

Gas-Phase Mercury Control Technology from Flue Gas (연소배가스로부터 가스상 수은 처리기술)

  • 이시훈
    • Journal of Energy Engineering
    • /
    • v.12 no.2
    • /
    • pp.65-73
    • /
    • 2003
  • In Korea, not much interest has been paid yet to mercury among flue gas HAPs (Hazardous Air Pollutants), but mercury is expected to become a major problem in the near future. The present paper investigates the current state of mercury emission and control technologies. Interest of the U.S. and European countries in the area of air pollution has been recently directed to mercury emitted from power plants. There are largely two mercury removal technologies applied to power plants. One is removing mercury by oxidizing elemental mercury in WFGD (Wet Flue Gas Desulfurization), and the other is spraying an adsorbent such as activated carbon or other novel sorbents (low-cost sorbents). Developed country is requiring that all power plants be equipped with mercury control facilities by 2007. This paper aims at contributing to the establishment of future strategies in response to the problem.

A Study on the Method to Avoid the Gas Group IIC Equipment of Explosion Proof Electrical Equipment Adjacent to the Source of Release of Hydrogen Handling Facility (수소 취급설비의 누출원에 인접한 방폭전기기기의 가스그룹 IIC 기기 회피 방안에 관한 연구)

  • BYUN, YOON SUP
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.4
    • /
    • pp.383-390
    • /
    • 2022
  • Appropriate explosion proof electrical equipment should be installed in hazardous areas. In areas where hydrogen is handled, explosion proof electrical equipment adjacent to the hydrogen handing facility must be reviewed for selection of gas group IIC (or IIB+H2) equipment. When selecting explosion proof electrical equipment for the flammable substance handling facility in areas where hydrogen and flammable substance are handled, the method to avoid gas group IIC (or IIB+H2) equipment has been suggested by using the operating pressure of the hydrogen handling facility. When the operating pressure of the outdoor hydrogen handling facility is 1.065 MPa or less, it has been confirmed that there is no need to install gas group IIC (or IIB+H2) equipment for the flammable substance handling facility adjacent to the hydrogen handling facility. And the method of selecting explosion proof electrical equipment for the flammable substance handling facility has been suggested as a flowchart, so it will be able to be utilized when selecting appropriate explosion proof electrical equipment.

Technical Trend of Plating & Surface Treatment for Eco-environment (친환경 도금표면처리 기술동향)

  • Kang, Kae-Myung;Kim, Yu-Sang
    • Journal of Surface Science and Engineering
    • /
    • v.42 no.6
    • /
    • pp.301-310
    • /
    • 2009
  • Recently, it has been increasing for the eco-environment plating and surface treatment of eco-environment to decrease hazardous materials. Particular eco-environment can be applied to electronics or automotive parts of industry. In the case of mobile phone, if there were fired, the products bearing dye may be contaminated with the hazardous and wasted. we can obtain the original metal color by electro coloring by metal salt, get rid of hazardous gas, decrease the wasted sludges. Now, the industrial patent number is increasing in Korea, we can accomplish the development of green industry by supporting technical trend of the plating and surface treatment in eco-environment.