• 제목/요약/키워드: hazardous area/zone

검색결과 18건 처리시간 0.018초

Operating Pressure Conditions for Non-Explosion Hazards in Plants Handling Propane Gas

  • Choi, Jae-Young;Byeon, Sang-Hoon
    • Korean Chemical Engineering Research
    • /
    • 제58권3호
    • /
    • pp.493-497
    • /
    • 2020
  • Hazardous area classification is designed to prevent chemical plant explosions in advance. Generally, the duration of the explosive atmosphere is used for zone type classification. Herein, IEC code, a quantitative zone type classification methodology, was used to achieve Zone 2 NE, which indicates a practical non-explosion condition. This study analyzed the operating pressure of a vessel handling propane to achieve Zone 2 NE by applying the IEC code via MATLAB. The resulting zone type and hazardous area grades were compared with the results from other design standards, namely API and EI codes. According to the IEC code, the operating pressure of vessels handling propane should be between 101325-116560.59 Pa. In contrast, the zone type classification criteria used by API and EI codes are abstract. Therefore, since these codes could interpret excessively explosive atmospheres, care is required while using them for hazardous area classification design.

Specific Process Conditions for Non-Hazardous Classification of Hydrogen Handling Facilities

  • Choi, Jae-Young;Byeon, Sang-Hoon
    • Safety and Health at Work
    • /
    • 제12권3호
    • /
    • pp.416-420
    • /
    • 2021
  • Hazardous area classification design is required to reduce the explosion risk in process plants. Among the international design guidelines, only IEC 60079-10-1 proposes a new type of zone, namely zone 2 NE, to prevent explosion hazards. We studied how to meet the zone 2 NE grade for a facility handling hydrogen gas, which is considered as most dangerous among explosive gases. Zone 2 NE can be achieved considering the grade of release, as well as the availability and effectiveness of ventilation, which are factors indicative of the facility condition and its surroundings. In the present study, we demonstrate that zone 2 NE can be achieved when the degree of ventilation is high by accessing temperature, pressure, and size of leak hole. The release characteristic can be derived by substituting the process condition of the hydrogen gas facility. The equations are summarized considering relation of the operating temperature, operating pressure, and size of leak hole. Through this relationship, the non-hazardous condition can be realized from the perspective of inherent safety by the combination of each parameter before the initial design of the hydrogen gas facility.

LNG를 사용하는 설비에서의 폭발위험장소 적용 및 구분에 대한 제도/기술적 접근방안 (Technical/Systemic Approach to Safety Assesment of Thermoprocessing Equipment Consuming LNG for Classification of Hazardous Area)

  • 최상원
    • 한국안전학회지
    • /
    • 제26권5호
    • /
    • pp.33-40
    • /
    • 2011
  • In the hazardous areas where explosive liquids, vapors and gases exist, electrical apparatus/equipment should have explosion-proof construction. The consuming of liquefied natural gas(LNG) has markedly increased in the industrial field, especially in aspect of some thermoprocessing equipment, boiler, dryer, furnace, annealer, kiln, regenerative thermal oxidizer(RTO) and so on. Because it has many merits, clean fuel, safety, no transportation/storage facility and so on. It is strongly recommend that the classification of hazards has to be decided to prevent and protect explosion which may occur in thermoprocessing equipment. In this paper, the operated thermoprocessing equipments in industrial area investigated and explosion risk assessment about LNG leakage from its facilities was performed through numerical calculation and computer simulation. Finally, we suggest the systemic/technical approach for safety assessments of thermoprocessing equipments consumed LNG fuel which are specially subjected to classification of hazardous area.

KS C IEC 60079-10-1 규격의 무시할 수 있는 정도와 누출특성에 관한 연구 (Study on the Negligible Extent(NE) and Release Characteristic of KS C IEC 60079-10-1(2015) Standard)

  • 조필래;이향직;백종배
    • 한국안전학회지
    • /
    • 제35권2호
    • /
    • pp.111-117
    • /
    • 2020
  • When KS C IEC 60069-10-1(2015) standard is applied to estimate a hazardous area, the chart showing the relationship between a hazardous area distance and release characteristic is used as a guide to determine the extent of hazardous zones for various forms of release. Three release characteristic lines based on the three types of release as an unimpeded jet release with high velocity, a diffusive jet release with low velocity, and a release of heavy gases or vapours that spread along horizontal surfaces are given. As these characteristic lines have the low limit threshold, it is difficult to estimate the hazardous area distance when the value of release characteristic is under the low limit threshold. And KS C IEC 60079-10-1(2015) standard shows the concept for a zone of Negligible extent(NE) which can be considered as non hazardous area, but it is also difficult to apply the concept of a Negligible extent. The purpose of this paper is to suggest the guideline for the release characteristic to decide a hazardous area distance and the Negligible extent(NE) being considered as non-hazardous area when deciding a hazardous area distances by the KS C IEC 60079-10-1 standard.

The "Warm Zone" Cases: Environmental Monitoring Immediately Outside the Fire Incident Response Arena by Firefighters

  • Caban-Martinez, Alberto J.;Kropa, Bob;Niemczyk, Neal;Moore, Kevin J.;Baum, Jeramy;Solle, Natasha Schaefer;Sterling, David A.;Kobetz, Erin N.
    • Safety and Health at Work
    • /
    • 제9권3호
    • /
    • pp.352-355
    • /
    • 2018
  • Hazardous work zones (i.e., hot, warm, and cold) are typically established by emergency response teams during hazardous materials (HAZMAT) calls but less consistently for fire responses to segment personnel and response activities in the immediate geographic area around the fire. Despite national guidelines, studies have documented the inconsistent use of respiratory protective equipment by firefighters at the fire scene. In this case-series report, we describe warm zone gas levels using multigas detectors across five independent fire incident responses all occurring in a large South Florida fire department. Multigas detector data collected at each fire response indicate the presence of sustained levels of volatile organic compounds in the "warm zone" of each fire event. These cases suggest that firefighters should not only implement strategies for multigas detector use within the warm zone but also include respiratory protection to provide adequate safety from toxic exposures in the warm zone.

남해연안 골프장조성에 따른 해양환경영향평가 개선방안 (Improvement of Marine Environmental Impact Assessment for Golf Course Projects in Southern Coastal Area of Korea)

  • 김귀영;이대인;유준;엄기혁;전경암
    • 환경영향평가
    • /
    • 제19권5호
    • /
    • pp.453-464
    • /
    • 2010
  • We evaluated the status and problems of golf course developments in the southern coast of Korea. It's adjacent waters supports nursery and fishing grounds for commercially-important fisheries species, and various sites are designated and protected as marine protection area(MPA), fisheries reserve, or clean area(blue belt) for producing shellfish. We proposed key assessment items for environmental impact assessment(EIA) and checklists in selecting golf course locations. For the protected areas, we suggest that it is essential to limit golf course establishment while setting a minimal distance from the coast to secure a buffer zone for mitigating the environmental impacts. To efficiently utilize existing regional coastal management plans, it is necessary to diagnose how a golf course development will potentially modify geomorphology and scenery, amplify pollutant loads from non-point sources, and disrupt the functions of coastal ecosystem. Especially, continued monitoring and assesssing input loads of hazardous materials originating from agricultural chemicals should be obligatory. Finally, measures for improving the QA/QC analysis were discussed to enhance reliability of environmental data with respect to golf courses and adjacent coastal waters.

건설 현장 안전관리를 위한 IoT 기반의 위험구역 경보 시스템 (IoT-based Dangerous Zone Alarming System for Safety Management in Construction Sites)

  • 김승호;강창순;류한국
    • 한국융합학회논문지
    • /
    • 제10권10호
    • /
    • pp.107-115
    • /
    • 2019
  • 인적 및 물적 피해를 크게 초래하는 건설현장의 안전사고를 효과적으로 방지할 수 있는 시스템이 절실히 필요하다. 건설현장의 안전관리 시스템은 주로 대규모 건설현장 위주로 시범 운용되고 있으나, 중소규모의 현장에서 저비용으로 운용할 수 있는 안전관리 시스템은 많이 부족한 실정이다. 건설현장의 안전사고는 예상되는 위험 지역에 허가받지 않은 작업자가 접근하지 못하도록 사전 조치를 하면 효과적으로 방지할 수 있다. 본 연구에서는 소규모 건설현장에서 저비용으로 운용할 수 있는 사물인터넷 기반의 위험구역 경보 시스템을 개발하였다. 본 시스템은 지그비 기반의 비콘기술과 셀룰러 이동통신 기술 등을 활용하여 건설현장에서 추가적인 네트워크의 구축이 없이 허가된 작업자 또는 외부인이 위험구역에 접근시에 감지하고, 안전 관리자에게 위험 경보를 즉시 통보하여 적절한 안전조치를 취할 수 있다.

누출사고 방지를 위한 위험물 탱크의 기초 안정성 분석 (Stability Analysis of the Foundation of Hazardous Material Storage Tank for Preventing Leakage Accidents)

  • 임종진;구재현
    • 한국화재소방학회논문지
    • /
    • 제34권4호
    • /
    • pp.96-100
    • /
    • 2020
  • 산업단지내 위험물 저장탱크 기초의 결함으로 인한 위험물질의 유출사고는 인근 지역의 대형 인명사고 및 대형화재를 일으킬 수 있으므로 기초의 설계 및 시공단계에서 세심한 주의를 기울여야 한다. 본 연구에서는 기존 위험물탱크 단지가 건설된 대표지반을 선정하여 3차원 모델링에 의한 유한요소 수치해석을 수행하였으며, 위험물 저장탱크 기초의 안정성 평가를 위하여, 대표적인 탱크 기초 유형을 4종류로 분류하고 각 유형에 대한 해석을 수행하였다. 결과적으로, 탱크기초의 응력 및 침하량 크기와 분포 특성은 링월기초의 경우 옆판 직하부분이 탱크 중심부에 비해 40배 이상의 응력이 집중되는 경향을 보였으며, 침하영향범위는 수평방향으로 탱크 반경만큼, 수직방향으로 탱크 직경만큼으로 나타났다. 본 분석결과를 활용하여 각 기초 유형별로 위험물 저장탱크의 설계 및 품질관리 가이드라인을 제시하였다.

Application of integrated geophysical methods to investigate the cause of ground subsidence of the highly civilized area

  • Kim Jung-Ho;Yi Myeong-Jong;Hwang Se-Ho;Song Yoonho;Cho Seong-Jun;Lee Seong-Kon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.410-415
    • /
    • 2003
  • Ground subsidence has occurred in the downtown of Muan-eup in Korea. Integrated geophysical survey, including two-dimensional resistivity, CSMT(Controlled source magnetotelluric), magnetic, borehole logging, GPR and resistivity tomography, has been conducted to investigate the cause of subsidence and ground conditions. Since the target area is in the city downtown, there were no spaces for surface geophysical methods. To get regional geology and to facilitate the detailed geophysical interpretation in the survey area, two-dimensional resistivity, CSMT and magnetic surveys have been applied in the outer region of the downtown. From these results, we could accurately define the Gwangju fault system and estimate the geologic conditions in the downtown. For the detailed survey of the downtown area, resistivity tomography and borehole logging data have been acquired using a few tens of densely located boreholes. Among these survey results, borehole logging data provided the guide to classification of the rock type and we could define the geologic boundary of granite and limestone formations. From the resistivity tomograms of 42 sections, which are densely located enough to be interpreted in a three-dimensional manner, we could delineate the possible weak zones or cavities in the limestone formations. In particular, resistivity tomograms in the subsided area showed the real image of ground subsidence. The map of hazardous zone has been derived from the joint interpretation of these survey results and we could provide the possible reinforcement strategy in this area.

  • PDF

Technical Approaches for Assessment of Ground Water Contamination with TCE in an Industrial Area

  • Jeon, Kweonho;Yu, Soonyoung;Jeong, Jangsik;Son, Yanglae
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 International Symposium
    • /
    • pp.70-86
    • /
    • 2003
  • Despite its usability, TCE has been managed as a hazardous material due to the toxicity and many contamination cases were surveyed in some developed countries. U.S.EPA(Kram et al., 2001) suggested DNAPL characterization methods and approaches based on survey experiences at several sites. However, Korea has not the least assessment of contamination and trial of remediation, although there are a lot of doubtable areas where ground water would be contaminated with TCE. In this study, we try to assess the volume and extent of ground water contamination with TCE and delineate the contamination source zones in an industrial area. Ground water in this area flows through fractures and the contaminant TCE has the properties of high volatility, high density and low partitioning to soil material. Thus, we applied a variety of technical approaches to identify the contamination status; documentary, hydrogeochemical, hydrogeological and geological surveys. In addition, additional survey was performed based on the interim findings, which showed that ground water contamination was limited to the relatively small area with high concentrations to the deep place. The contamination source zone is estimated to be the asphalt test institute where a great deal of TCE has been used to analyze the amount of asphalt soluble in TCE since 1984. Based on the contamination characterization and a myriad of documents about ground water remediation, appropriate site remediation management options will be recommended later. This study is now under way and this paper was focused on describing the technical approaches used to achieve the goals of this study.

  • PDF