• Title/Summary/Keyword: hazardous

검색결과 2,751건 처리시간 0.033초

Assessing Risks and Categorizing Root Causes of Demolition Construction using the QFD-FMEA Approach (QFD-FMEA를 이용한 해체공사의 위험평가와 근본원인의 분류 방법)

  • Yoo, Donguk;Lim, Nam-Gi;Chun, Jae-Youl;Cho, Jaeho
    • Journal of the Korea Institute of Building Construction
    • /
    • 제23권4호
    • /
    • pp.417-428
    • /
    • 2023
  • The demolition of domestic infrastructures mirrors other significant construction initiatives in presenting a markedly high accident rate. A comprehensive investigation into the origins of such accidents is crucial for the prevention of future incidents. Upon detailed inspection, the causes of demolition construction accidents are multifarious, encompassing unsafe worker behavior, hazardous conditions, psychological and physical states, and site management deficiencies. While statistics relating to demolition construction accidents are consistently collated and reported, there exists an exigent need for a more foundational cause categorization system based on accident type. Drawing from Heinrich's Domino Theory, this study classifies the origins of accidents(unsafe behavior, unsafe conditions) and human errors(human factors) as per the type of accidents experienced during demolition construction. In this study, a three-step model of QFD-FMEA(Quality Function Deployment - Failure Mode Effect Analysis) is employed to systematically categorize accident causes according to the types of accidents that occur during demolition construction. The QFD-FMEA method offers a technique for cause classification at each stage of the demolition process, including direct causes(unsafe behavior, unsafe environment), and human errors(human factors) through a tri-stage process. The results of this accident cause classification can serve as safety knowledge and reference checklists for accident prevention efforts.

A Study on Indoor Environment Safety Level Certification of Educational Facilities and School Safety Level Evaluation (교육시설 안전 등급 인증과 학교 안전도 심사에 대한 연구)

  • Myoung-Kwan Kim;Young-Guk Kwon
    • Journal of the Korea Safety Management & Science
    • /
    • 제25권2호
    • /
    • pp.17-28
    • /
    • 2023
  • This study aimed to verify the validity of the evaluation items and weight determination of the indoor environmental safety area, which has the most frequent accidents, among the safety certification evaluations of educational facilities by the Ministry of Education of the Republic of Korea, which has been conducted since May 2021. As a preceding study, the evaluation items of the school safety evaluation checklist being implemented in the US state of Vermont were compared, and the causes of accidents judged by teachers in the accident experiences written by 200 Korean teachers were compared with the safety certification evaluation items belonged to the Ministry of Education. In addition, research literature using the AHP analysis technique on safety risks of elementary and secondary schools in China and safety evaluation index study cases of 539 elementary school children in Indonesia were analyzed. Through these preceding studies, measures to add and adjust evaluation items were derived and the validity and importance rankings of evaluation items were calculated through AHP questionnaires to teachers and safety experts. In addition, a survey was conducted on 104 ordinary people to verify the results of expert analysis. As a result of expert AHP analysis, 'safety education and disaster response training (.396)' was the highest priority for the relative importance of the first layer, followed by 'safety measures (.387)' and 'building materials'. Safety (.216)' was found to be the highest priority. In the overall importance ranking of the 13 second-tier screening items, safety accident prevention education had the highest priority and disaster preparedness training ranked second, proving that the Ministry of Education's review weight was underestimated. In addition, slip and collision accident countermeasures, which were not in the existing Ministry of Education review items, ranked 4th, laboratory practice room safety measures ranked 6th, and sanitation, cleanliness, hazardous substance management, and cafeteria/cooking room safety measures ranked 9th, indicating a significant level of importance. Referring to the importance ranking, which is the result of this study, it is suggested that it is necessary to review the weight of each review item again.

Effect of Extracted Tempered Glass from End-of-Life Solar Panels on Mechanical Properties of Mortar (사용수명이 종료된 태양광 패널에서 분리된 강화유리가 모르타르의 역학적 특성에 미치는 영향)

  • So Yeong Choi;Sang Woo Kim;Il Sun Kim;Eun Ik Yang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제27권2호
    • /
    • pp.77-84
    • /
    • 2023
  • As the installation of solar panel accelerates, so does the number of solar panels reaching their end-of-life (EOL). However, the EOL solar panels is becoming a concern, as they contain potentially hazardous materials and are not easily recycled. Coping strategies such as effective collection, disposal, and recycling methods will be important to manage the growing number of EOL solar panels in the coming years.Therefore, many studies have focused on the development of EOL solar panel recycling technology. One recycling technology for EOL solar panels applicable to the construction field is the application of extracted tempered glass from EOL solar panels as construction materials. This study summarized the EOL solar panel disassembly technology and evaluated the mechanical properties of mortar using extracted tempered glass as fine aggregate. The results showed that when tempered glass was used as a fine aggregate in mortar, the compressive strength, flexural strength, and macro pores in the 1-3 ㎛ with 200-300 ㎛ range were affected, regardless of the disassembly technology of EOL solar panels. Especially, we found that the mechanical performance of mortar using chemically treated tempered glass was noticeably decreased due to changes in the chemical composition of the extracted tempered glass resulting from the removal of K2O and CuO due to chemical reactions. Meanwhile, it was found that when fly ash was used as a binder, the reduction of mechanical performance could be alleviated.

Wearable oxygen saturation measurement platform for worker safety management (작업자의 안전관리를 위한 웨어러블 산소포화도 측정 플랫폼)

  • Lee, Yun Ju;Song, Chai Jong;Yoo, Sun Kook
    • Smart Media Journal
    • /
    • 제11권9호
    • /
    • pp.30-38
    • /
    • 2022
  • It is important to grasp biometric data in real time for prompt action in the event of a safety accident at a work site where the risk of safety accidents exists. Among them, blood oxygen saturation is the most important factor in maintaining human life, so real-time oxygen saturation measurement and monitoring is necessary according to the situation as a preemptive response for worker safety management. By receiving real-time bio-signals from workers wearing health and life-risk protective clothing, and sharing and analyzing the worker's risk status in an external system, it is possible to diagnose the worker's current condition and efficiently respond to emergencies that may occur to the worker. In this paper, we propose a wearable oxygen saturation measurement platform technology that can monitor the risk of harmful gases and oxygen saturation of the wearer in real time and ensure the wearer's activity and safety in order to cope with emergency situations at the scene of an accident. If we overcome the limitations identified through the results of the proposed system later and apply improved biodata such as motion correction to the platform, we expect that it will be usable not only in hazardous gas environments, but also in hospitals and homes for emergency patients.

Analysis of Non-Biodegradable Organic Matter Leakage Characteristics and Correlation Analysis in Paldang Lake and its Upper Reaches (팔당호와 팔당호 상류의 난분해성 유기물질 유출 특성 분석 및 상관성 분석)

  • Chaewon Kang;Kyungik Gil
    • Journal of Wetlands Research
    • /
    • 제25권4호
    • /
    • pp.221-229
    • /
    • 2023
  • Extracted from the metropolitan area, the Paldang Lake, which supplies approximately 8 million tons of water, has achieved a BOD (Biochemical Oxygen Demand) of 1.1 mg/L as a result of water quality preservation policies. However, concerning the COD (Chemical Oxygen Demand) component that encompasses refractory organic matter, there has been an observable upward trend in concentration. The introduction of refractory organic matter into the water source of Paldang Lake brings potential increments in BOD, generates off-putting tastes and odors in tap water, increases THM (Trihalomethane) formation, and triggers algae proliferation. Moreover, if residual hazardous refractory pollutants persist in aquatic environments, they may induce endocrine disruption and phenomena such as antibiotic resistance. In this study, a monitoring campaign was executed to discern the concentration of refractory organic matter emissions from point and non-point sources within Paldang Lake and its upstream region, with the aim of managing refractory organic matter in Paldang Lake. By comparing refractory organic matter emission concentrations across monitored areas, the elimination efficiency at wastewater treatment plants was assessed. Additionally, employing the Pearson correlation correlation analysis technique, correlations among refractory organic matter indices, antecedent wet days, and antecedent dry days were explored. The concentrations of refractory organic matter in rivers and Paldang Lake exhibited a similar pattern. Wastewater treatment plant effluents exhibited higher concentrations compared to rivers and Paldang Lake. The assessment of refractory organic matter removal at wastewater treatment plants indicated a removal efficiency of 65.73%. However, no significant correlation emerged between refractory organic matter emission concentration and antecedent wet days or priory antecedent dry days. This absence of correlation is attributed to data scarcity, underscoring the need for long-term monitoring and data accumulation.

Ecological Risk Assessment of 4,4'-Methylenedianiline (4,4'-Methylenedianiline의 환경매체별 위해성평가)

  • Hyun Soo Kim;Daeyeop Lee;Kyung Sook Woo;Si-Eun Yoo;Inhye Lee;Kyunghee Ji;Jungkwan Seo;Hun-Je Jo
    • Journal of Environmental Health Sciences
    • /
    • 제49권6호
    • /
    • pp.334-343
    • /
    • 2023
  • Background: South Korea's Act on Registration and Evaluation, etc. of Chemicals (known as K-REACH) was established to protect public health and the environment from hazardous chemicals. 4,4'-Methylenedianiline (MDA), which is used as a major intermediate in industrial polymer production and as a vulcanizing agent in South Korea, is classified as a toxic substance under the K-REACH act. Although MDA poses potential ecological risks due to industrial emissions and hazards to aquatic ecosystems, no ecological risk assessment has been conducted. Objectives: The aim of this study is to assess the ecological risk of MDA by identifying the actual exposure status based on the K-REACH act. Methods: Various toxicity data were collected to establish predicted no effect concentrations (PNECs) for water, sediment, and soil. Using the SimpleBox Korea v2.0 model with domestic release statistical data and EU emission factors, predicted environmental concentrations (PECs) were derived for ten sites, each referring to an MDA-using company. Hazard quotient (HQ) was calculated by ratio of the PECs and PNECs to characterize the ecological risk posed by MDA. To validate the results of modeling-based assessment, concentration of MDA was measured using in-site freshwater samples (two to three samples per site). Results: PNECs for water, sediment, and soil were 0.000525 mg/L, 4.36 mg/kg dw, and 0.1 mg/kg dw, respectively. HQ for surface water and sediment at several company sites exceeded 1 due to modeling data showing markedly high PEC in each environmental compartment. However, in the results of validation using in-site surface water samples, MDA was not detected. Conclusions: Through an ecological risk assessment conducted in accordance with the K-REACH act, the risk level of MDA emitted into the environmental compartments in South Korea was found to be low.

Summative Usability Assessment of Software for Ventilator Central Monitoring System (인공호흡기 중앙감시시스템 소프트웨어의 사용적합성 총괄평가)

  • Ji-Yong Chung;You Rim Kim;Wonseuk Jang
    • Journal of Biomedical Engineering Research
    • /
    • 제44권6호
    • /
    • pp.363-376
    • /
    • 2023
  • According to the COVID-19, development of various medical software based on IoT(Internet of Things) was accelerated. Especially, interest in a central software system that can remotely monitor and control ventilators is increasing to solve problems related to the continuous increase in severe COVID-19 patients. Since medical device software is closely related to human life, this study aims to develop central monitoring system that can remotely monitor and control multiple ventilators in compliance with medical device software development standards and to verify performance of system. In addition, to ensure the safety and reliability of this central monitoring system, this study also specifies risk management requirements that can identify hazardous situations and evaluate potential hazards and confirms the implementation of cybersecurity to protect against potential cyber threats, which can have serious consequences for patient safety. As a result, we obtained medical device software manufacturing certificates from MFDS(Ministry of Food and Drug Safety) through technical documents about performance verification, risk management and cybersecurity application.The purpose of this study is to conduct a usability assessment to ensure that ergonomic design has been applied so that the ventilator central monitoring system can improve user satisfaction, efficiency, and safety. The rapid spread of COVID-19, which began in 2019, caused significant damage global medical system. In this situation, the need for a system to monitor multiple patients with ventilators was highlighted as a solution for various problems. Since medical device software is closely related to human life, ensuring their safety and satisfaction is important before their actual deployment in the field. In this study, a total of 21 participants consisting of respiratory staffs conducted usability test according to the use scenarios in the simulated use environment. Nine use scenarios were conducted to derive an average task success rate and opinions on user interface were collected through five-point Likert scale satisfaction evaluation and questionnaire. Participants conducted a total of nine use scenario tasks with an average success rate of 93% and five-point Likert scale satisfaction survey showed a high satisfaction result of 4.7 points on average. Users evaluated that the device would be useful for effectively managing multiple patients with ventilators. However, improvements are required for interfaces associated with task that do not exceed the threshold for task success rate. In addition, even medical devices with sufficient safety and efficiency cannot guarantee absolute safety, so it is suggested to continuously evaluate user feedback even after introducing them to the actual site.

Influence of Mixture Non-uniformity on Methane Explosion Characteristics in a Horizontal Duct (수평 배관의 메탄 폭발특성에 있어서 불균일성 혼합기의 영향)

  • Ou-Sup Han;Yi-Rac Choi;HyeongHk Kim;JinHo Lim
    • Korean Chemical Engineering Research
    • /
    • 제62권1호
    • /
    • pp.27-35
    • /
    • 2024
  • Fuel gases such as methane and propane are used in explosion hazardous area of domestic plants and can form non-uniform mixtures with the influence of process conditions due to leakage. The fire-explosion risk assessment using literature data measured under uniform mixtures, damage prediction can be obtained the different results from actual explosion accidents by gas leaks. An explosion characteristics such as explosion pressure and flame velocity of non-uniform gas mixtures with concentration change similar to that of facility leak were examined. The experiments were conducted in a closed 0.82 m long stainless steel duct with observation recorded by color high speed camera and piezo pressure sensor. Also we proposed the quantification method of non-uniform mixtures from a regression analysis model on the change of concentration difference with time in explosion duct. For the non-uniform condition of this study, the area of flame surface enlarged with increasing the concentration non-uniform in the flame propagation of methane and was similar to the wrinkled flame structure existing in a turbulent flame. The time to peak pressure of methane decreased as the non-uniform increased and the explosion pressure increased with increasing the non-uniform. The ranges of KG (Deflagration index) of methane with the concentration non-uniform were 1.30 to 1.58 [MPa·m/s] and the increase rate of KG was 17.7% in methane with changing from uniform to non-uniform.

Monitoring Hazards to Verify the Safety of Plant-Based Meat Alternatives (식물성 대체육의 안전성 검증을 위한 위해요소 모니터링)

  • Ayeong Ma;Eun Sung Shin;Seon-A Son;Tai-Sun Shin;Hyun-Jung Chung
    • Journal of Food Hygiene and Safety
    • /
    • 제39권2호
    • /
    • pp.83-94
    • /
    • 2024
  • The proportion of plant-based meat alternative (PBMA) consumers has recently increased in Korea. This is due to several reasons including protecting the environment, satisfying preferences, maintaining health, and improving eating habits. Accordingly, many companies produce and sell alternative meat using various materials. Alternative meats are classified into plant (such as soybeans and wheat), seaweed, insect, and cultured meats, depending on the raw materials used in manufacturing. PBMA is sold after undergoing processes such as grinding, seasoning, and molding. Therefore, monitoring the presence of any hazardous elements during this process is essential. Accordingly, in this study, we analyzed the harmful components of nine domestically distributed PBMA that are most easily accessible to consumers. After extracting fat from the samples and analyzing the rancidity level, samples F, G, and I were highly rancid. Trace amounts of aflatoxin were detected in samples A and B, but confirmed to be within the range. Cd and Pb were not detected in any sample. We hope that this study will help establish methods to ensure the safety of domestically sold PBMA.