• 제목/요약/키워드: harvesting

검색결과 2,861건 처리시간 0.03초

전자기유도방식의 에너지 하베스팅을 이용한 자가발전 무선 비상호출기 구현 연구 (Feasibility study for the self powered wireless emergency call button using electromagnetic energy harvesting mechanism)

  • 김일중;최연석
    • 대한안전경영과학회지
    • /
    • 제16권2호
    • /
    • pp.111-119
    • /
    • 2014
  • This paper describes the design and implementation of a electromagnetic energy harvesting mechanism and electronic circuit for autonomous emergency call system. This analysis results show the power output of the proposed harvesting mechanism and circuit up to max power output 5V and it can hold up to 65 msec of the power generation and 10msec of the RF transmission. Based on the these testing results, the implementation of autonomous emergency call device without battery power or any external power source is feasible.

웨이브 글라이더 메커니즘을 이용한 이동형 파력발전 시스템의 성능 테스트와 최적 설계에 관한 연구 (Study on Mobile Wave Energy Harvesting System Utilizing Wave Glider Mechanism)

  • 조한길;유선철
    • 한국해양공학회지
    • /
    • 제32권5호
    • /
    • pp.393-401
    • /
    • 2018
  • This paper reports a novel mobile-type wave energy harvesting system. The proposed system adopts a wave glider's propulsion mechanism. A wave glider's blades were mounted on a circular layout and generated a rotational motion. Combining the wave converting system with the wave glider, a mobile floating-type robotic buoy system was developed. It enabled the relocation of the buoy position, as well as station-keeping for long term operation. It had a small size and could efficiently harvest wave energy. A feasibility study and modeling were carried out, and a prototype system was constructed. Various tank tests were performed to optimize the proposed wave energy harvesting system.

에너지 하베스팅 무선 센서네트워크을 위한 전력기반 Pipelined-forwarding MAC프로토콜 (A Power-based Pipelined-forwarding MAC Protocol for Energy Harvesting Wireless Sensor Networks)

  • 심규욱;박형근
    • 전기학회논문지
    • /
    • 제68권1호
    • /
    • pp.98-101
    • /
    • 2019
  • In this paper, we propose the power-based pipelined-forwarding MAC protocol which can select relay nodes according to the residual power and energy harvesting rate in EH-WSN (energy-harvesting wireless sensor networks). The proposed MAC follows a pipelined-forwarding scheme in which nodes repeatedly sleep and wake up in an EH-WSN environment and data is continuously transmitted from a high-level node to a low-level node. The sleep interval is adaptively controlled so that nodes with low energy harvesting rate can be charged sufficiently, thereby minimizing the transmission delay and increasing the network lifetime. Simulation shows that the proposed MAC protocol improves the balance of residual power and network lifetime.

에너지 하베스팅 무선 센서네트워크에서 에너지균형을 위한 라우팅프로토콜 (Routing Protocol for Energy Balancing in Energy Harvesting Wireless Sensor network)

  • Kang, Min-Seung;Park, Hyung-Kun
    • 한국정보통신학회논문지
    • /
    • 제24권5호
    • /
    • pp.666-669
    • /
    • 2020
  • Energy harvesting sensor networks have the ability to collect energy from the environment to overcome the power limitations of traditional sensor networks. The sensor network, which has a limited transmission range, delivers data to the destination node through a multi-hop method. The routing protocol should consider the power situation of nodes, which is determined by the residual power and energy harvesting rate. At this time, if only considering the magnitude of the power, power imbalance can occur among nodes and it can induce instantaneous power shortages and reduction of network lifetime. In this paper, we designed a routing protocol that considers the balance of power as well as the residual power and energy harvesting rate.

머신 러닝 알고리즘을 이용한 역방향 깃발의 에너지 하베스팅 효율 예측 (Prediction of Energy Harvesting Efficiency of an Inverted Flag Using Machine Learning Algorithms)

  • 임세환;박성군
    • 한국가시화정보학회지
    • /
    • 제19권3호
    • /
    • pp.31-38
    • /
    • 2021
  • The energy harvesting system using an inverted flag is analyzed by using an immersed boundary method to consider the fluid and solid interaction. The inverted flag flutters at a lower critical velocity than a conventional flag. A fluttering motion is classified into straight, symmetric, asymmetric, biased, and over flapping modes. The optimal energy harvesting efficiency is observed at the biased flapping mode. Using the three different machine learning algorithms, i.e., artificial neural network, random forest, support vector regression, the energy harvesting efficiency is predicted by taking bending rigidity, inclination angle, and flapping frequency as input variables. The R2 value of the artificial neural network and random forest algorithms is observed to be more than 0.9.

Energy harvesting from conducted electromagnetic interference of fluorescent light for Internet of Things application

  • Hyoung, Chang-Hee;Hwang, Jung-Hwan
    • ETRI Journal
    • /
    • 제44권5호
    • /
    • pp.759-768
    • /
    • 2022
  • A novel energy harvesting technique that uses conducted electromagnetic interference as an energy source is presented. Conducted EMI generated from fluorescent light using a switched-mode power supply was measured and modeled as an equivalent voltage source. Two types of rectifier circuits-a bridge rectifier and a voltage doubler-were used as the harvesting devices for conducted EMI source. The matching networks were designed based on the equivalent model, and the harvested power was improved. The implemented energy harvester produces a regulated power over 68.9 mW and current over 15.1 mA while a regulated voltage can be selected between 3.3 V and 5 V. The proposed system shows the highest harvesting power indoor environment and can provide enough power for the Internet of Things devices.

Enhancing Mechanical and Electrical Performance through Polymer Blending: A Study on PVA-PDDA Blended Films for Triboelectric Energy Harvesting

  • Nebiyou Tadesse Debele;Alemtsehay Tesfay Reda;Yong Tae Park
    • Composites Research
    • /
    • 제37권2호
    • /
    • pp.139-142
    • /
    • 2024
  • This study explores the impact of polymer blending on the mechanical properties and triboelectric energy harvesting capability of composite polymers. A multifunctional free-standing polymer blend composed of poly(vinyl alcohol) (PVA) and poly(diallyldimethylammonium chloride) (PDDA) was fabricated using a polymer casting method. Stress-strain analysis of the polymer blend revealed an enhanced stretchability of 308.4% with excellent transparency. Furthermore, triboelectric analysis revealed dynamic energy harvesting capabilities with impressive electrical voltage and current output of 50 V and 5 μA. These results represent a significant improvement compared to individual PVA and PDDA polymers and highlight the potential of polymer blending to enhance both mechanical and electrical properties for energy harvesting applications.

마찰전기 나노발전기를 위한 임피던스 커플러 스위치를 탑재한 3단계 전력 관리 시스템 (Three-Stage Power Management System Employing Impedance Coupler Switch for Triboelectric Nanogenerator)

  • 윤보경;이준영;정지훈
    • 전력전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.243-250
    • /
    • 2020
  • Energy harvesting is a recent technology involving the harvest and utilization of extremely small surrounding energy. Energy harvesting research is conducted in various fields. Triboelectric nanogenerators (TENGs) are energy harvesting technologies that use static electricity generated by physical movement or friction. Although TENGs generate output power in microwatt levels, they experience high internal impedance compared with other energy harvesting generators, thereby making the continuous transfer of electric power to loads difficult. This study proposes a power management system for TENGs that consists of three stages, that is, an AC/DC rectifier, an impedance coupler switch with a capacitor bank, and a DC/DC converter. In addition, the selection method of the AC/DC rectifier and DC/DC converter is proposed to maximize the amount of power transferred from energy harvesting areas. Furthermore, the impedance coupler switch and capacitor bank are discussed in detail. The validity and performance of the proposed three-stage power management system for TENGs are verified using a prototype system.

인지 통신 네트워크의 스펙트럼 감지 및 전력 수집 방안 (Method of Spectrum Sensing and Energy Harvesting in Cognitive Communication Network)

  • 김태욱;공형윤
    • 한국인터넷방송통신학회논문지
    • /
    • 제15권2호
    • /
    • pp.45-49
    • /
    • 2015
  • 본 논문에서는 인지 통신의 스펙트럼 감지 기법에 에너지 하베스팅 기법을 적용하여 2차 송신단의 전력 소모 없이 스펙트럼을 감지할 수 있을 뿐만 아니라 전력을 저장할 수 있는 방안을 제안하였다. 감지 및 수집 알고리즘은 에너지 하베스팅 기법으로 수집되는 전력량을 임계값과 비교하여 1차 네트워크의 스펙트럼 사용 유무를 판단하며 2차 송신단이 메시지를 전송하려는 경우, 1차 네트워크가 사용 중이라면 주파수를 변경하여 스펙트럼의 사용 유무를 판단하게 된다. 또한 전송하려는 메시지를 가지지 않는 경우, 지속적으로 전력을 수집하게 된다. 따라서 에너지 하베스팅 기법을 스펙트럼 감지 기법에 적용할 경우, 2차 네트워크의 전력이 낭비되는 문제점을 제거하고 전력을 충전하게 되므로 인지 네트워크의 활용도 및 효율성을 증가시킬 수 있다.

Interference Management Algorithm Based on Coalitional Game for Energy-Harvesting Small Cells

  • Chen, Jiamin;Zhu, Qi;Zhao, Su
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권9호
    • /
    • pp.4220-4241
    • /
    • 2017
  • For the downlink energy-harvesting small cell network, this paper proposes an interference management algorithm based on distributed coalitional game. The cooperative interference management problem of the energy-harvesting small cells is modeled as a coalitional game with transfer utility. Based on the energy harvesting strategy of the small cells, the time sharing mode of the small cells in the same coalition is determined, and an optimization model is constructed to maximize the total system rate of the energy-harvesting small cells. Using the distributed algorithm for coalition formation proposed in this paper, the stable coalition structure, optimal time sharing strategy and optimal power distribution are found to maximize the total utility of the small cell system. The performance of the proposed algorithm is discussed and analyzed finally, and it is proved that this algorithm can converge to a stable coalition structure with reasonable complexity. The simulations show that the total system rate of the proposed algorithm is superior to that of the non-cooperative algorithm in the case of dense deployment of small cells, and the proposed algorithm can converge quickly.