• Title/Summary/Keyword: harmonics

Search Result 2,108, Processing Time 0.032 seconds

A Study on the Analysis of Electric Energy Pattern Based on Improved Real Time NIALM (개선된 실시간 NIALM 기반의 전기 에너지 패턴 분석에 관한 연구)

  • Jeong, Han-Sang;Sung, Kyung-Sang;Oh, Hae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.34-42
    • /
    • 2017
  • Since existing nonintrusive appliance load monitoring (NIALM) studies assume that voltage fluctuations are negligible for load identification, and do not affect the identification results, the power factor or harmonic signals associated with voltage are generally not considered parameters for load identification, which limits the application of NIALM in the Smart Home sector. Experiments in this paper indicate that the parameters related to voltage and the characteristics of harmonics should be used to improve the accuracy and reliability of the load monitoring system. Therefore, in this paper, we propose an improved NIALM method that can efficiently analyze the types of household appliances and electrical energy usage in a home network environment. The proposed method is able to analyze the energy usage pattern by analyzing operation characteristics inherent to household appliances using harmonic characteristics of some household appliances as recognition parameters. Through the proposed method, we expect to be able to provide services to the smart grid electric power demand management market and increase the energy efficiency of home appliances actually operating in a home network.

A Study to Improve the DC Output Waveforms of AFE Three-Phase PWM Rectifiers (AFE 방식 3상 PWM 정류기의 직류 출력파형 개선에 관한 연구)

  • Jeon, Hyeon-Min;Yoon, Kyoung-Kuk;Kim, Jong-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.739-745
    • /
    • 2017
  • Many studies have been conducted to reduce environmental pollution by ships and reduce fuel consumption. As part of this effort, research on power conversion systems through DC distribution systems that link renewable energy with conventional power grids has been pursued as well. The diode rectifiers currently used include many lower harmonics in the input current of the load and distort supply voltage to lower the power quality of the whole system. This distortion of voltage waveforms causes the malfunctions of generators, load devices and inverter pole switching elements, resulting in a large number of switching losses. In this paper, a controller is presented to improve DC output waveforms, the input Power Factor and the THD of an AFE type PWM rectifier used for PLL. DC output voltage waveforms have been improved, and the input Power Factor can now be matched to the unit power factor. In addition, the THD of the input power supply has been proven by simulation to comply with the requirements of IEEE Std514-2014.

Therapeutic Singing-Based Music Therapy for Patients With Dysphagia: Case Studies (연하장애환자의 후두기능 및 연하관련 삶의 질 향상을 위한 치료적 노래부르기 중심 음악중재사례)

  • Yeo, Myung Sun;Kim, Soo Ji
    • 재활복지
    • /
    • v.22 no.1
    • /
    • pp.169-194
    • /
    • 2018
  • The aim of this study is to examine changes in swallowing function and quality of life with therapeutic singing-based music therapy for patients with dysphagia. The music therapy program was based on the previous study (Kim, 2010), and designed to improve breathing, phonation, and swallowing functions focusing on laryngeal elevation. Three patients with dysphagia participated in this study and each participant received a total of 11 or 12 individual music therapy sessions and each session was conducted for 30 minutes. In this study, three kinds of measurements were used. First, the measures of maximum phonation time (MPT), fundamental frequency, average intensity, jitter, shimmer, noise to harmonics ratio (NHR) by Praat test, second, laryngeal-diadochokinesis (L-DDK) to investigate laryngeal elevation, and last, the Swallowing-Quality of Life (SWAL-QOL) was measured. These cases have shown improved breathing, phonation, swallowing function, and the scores of SWAL-QOL in all of the patients. It suggests that this music therapy intervention was effective on laryngeal elevation, and the music intervention with therapeutic singing can be effectively implemented in further research for patients with dysphagia.

Hand Motion Signal Extraction Based on Electric Field Sensors Using PLN Spectrum Analysis (PLN 성분 분석을 통한 전기장센서 기반 손동작신호 추출)

  • Jeong, Seonil;Kim, Youngchul
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.97-101
    • /
    • 2020
  • Using passive electric field sensor which operates in non-contact mode, we can measure the electric potential induced from the change of electric charges on a sensor caused by the movement of human body or hands. In this study, we propose a new method, which utilizes PLN induced to the sensor around the moving object, to detect one's hand movement and extract gesture frames from the detected signals. Signals from the EPS sensors include a large amount of power line noise usually existing in the places such as rooms or buildings. Using the fact that the PLN is shielded in part by human access to the sensor, signals caused by motion or hand movement are detected. PLN consists mainly of signals with frequency of 60 Hz and its harmonics. In our proposed method, signals only 120 Hz component in frequency domain are chosen selectively and exclusively utilized for detection of hand movement. We use FFT to measure a spectral-separated frequency signal. The signals obtained from sensors in this way are continued to be compared with the threshold preset in advance. Once motion signals are detected passing throng the threshold, we determine the motion frame based on period between the first threshold passing time and the last one. The motion detection rate of our proposed method was about 90% while the correct frame extraction rate was about 85%. The method like our method, which use PLN signal in order to extract useful data about motion movement from non-contact mode EPS sensors, has been rarely reported or published in recent. This research results can be expected to be useful especially in circumstance of having surrounding PLN.

PV Inverter Operation according to DC Capacitor Aging (직류 커패시터 노후화에 따른 PV 인버터 동작)

  • Yongho Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.149-155
    • /
    • 2023
  • Photovoltaic power generation is the most familiar power generation facility among new and renewable energies, and its supply began to expand about 10 years ago, and at this point, interest in solutions and technologies for system maintenance management is increasing. In particular, it is necessary to take measures to maximize the overall efficiency of the solar power generation system, whether or not there is an abnormality in the solar power generation system, and when to replace parts. The PV inverter, one element of the photovoltaic power generation system, is a power conversion system that relies on power switching devices, and DC-Link capacitors are used according to the configuration of DC/DC converters and DC-AC inverters. These DC capacitors also affect system safety (Safety) through renewable energy facilities due to the decrease in power generation of PV inverters, power loss, and increase in harmonics (THD, total distortion of AC output current) due to aging and deterioration due to long-term use. factors can be analyzed. Therefore, in this paper, the PV inverter operating characteristics according to the DC capacitor capacity state currently operating in the photovoltaic power generation system were considered, and research contents were proposed to secure the safety and reliability of renewable energy facilities.

A Study on the Power Converter Control of Utility Interactive Photovoltaic Generation System (계통 연계형 태양광 발전시스템의 전력변환기 제어에 관한 연구)

  • Na, Seung-Kwon;Ku, Gi-Jun;Kim, Gye-Kuk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.2
    • /
    • pp.157-168
    • /
    • 2009
  • In this paper, a photovoltaic system is designed with a step up chopper and single phase PWM(Pulse Width Modulation) voltage source inverter. Where proposed Synchronous signal and control signal was processed by one-chip microprocessor for stable modulation. The step up chopper operates in continuous mode by adjusting the duty ratio so that the photovoltaic system tracks the maximum power point of solar cell without any influence on the variation of insolation and temperature because solar cell has typical voltage and current dropping character. The single phase PWM voltage source the inverter using inverter consists of complex type of electric power converter to compensate for the defect, that is, solar cell cannot be developed continuously by connecting with the source of electric power for ordinary use. It can cause the effect of saving electric power. from 10 to 20[%]. The single phase PWM voltage source inverter operates in situation that its output voltage is in same phase with the utility voltage. In order to enhance the efficiency of photovoltaic cells, photovoltaic positioning system using sensor and microprocessor was design so that the fixed type of photovoltaic cells and photovoltaic positioning system were compared. In result, photovoltaic positioning system can improved 5% than fixed type of photovoltaic cells. In addition, I connected extra power to the system through operating the system voltage and inverter power in a synchronized way by extracting the system voltage so that the phase of the system and the phase of single-phase inverter of PWM voltage type can be synchronized. And, It controlled in order to provide stable pier to the load and the system through maintaining high lurer factor and low output power of harmonics.

Tidal and Sub-tidal Current Characteristics in the Central part of Chunsu Bay, Yellow Sea, Korea during the Summer Season (서해 천수만 중앙부의 하계 조류/비조류 특성)

  • Jung, Kwang Young;Ro, Young Jae;Kim, Baek Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.2
    • /
    • pp.53-64
    • /
    • 2013
  • This study analyzed the ADCP records along with wind by KMA and discharge records at Seosan A-, B-district tide embankment by KRC for 33 days obtained in the Chunsu Bay, Yellow Sea, Korea spanning from July 29 to August 30, 2010. Various analyses include descriptive statistics, harmonic analysis of tidal constituents, spectra and coherence, complex correlation, progressive vector diagram and cumulative curves to understand the tidal and sub-tidal current characteristics caused by local wind and discharge effect. Observed current speed ranges from -30 to 40 (cm/sec), with standard deviation from 1.7 (cm/sec) at bottom to 18.7 (cm/sec) at surface. According to the harmonic analysis results, the tidal current direction show NNW-SSE. The magnitudes of semi-major axes range from 9.4 to 14.8 (cm/sec) for M2 harmonic constituent and from 4.4 to 7.0 (cm/sec) for S2, respectively. And the magnitudes of semi-minor axes range from 0.1 to 0.5 (cm/sec) for M2 and from 0.4 to 1.4 (cm/sec) for S2, respectively. In the spectral analysis results in the frequency domain, we found 3~6 significant spectral peaks for band-passed wind and residual current of all depth. These peak periods represent various periodicities ranging from 2 to 8 (days). In the coherency analysis results between band-passed wind and residual current of all depth, several significant coherencies could be resolved in 3~5 periodicities within 2.8 (days). Highest coherency peak occurred at 4.6 (day) with 1.2-day phase lag of discharge to band-passed residual current. The progressive vector of wind and residual current travelled to northward at all layers, and the travel distance at middle layer was greater than surface layer distance. The Northward residual current was caused by a seasonal southern wind, and the density-driven current formed by fresh water input effected southward residual current. The sub-tidal current characteristics is determined by seasonal wind force and fresh water inflow in the Chunsu Bay, Yellow Sea, Korea.

Small-Angle X-ray Scattering Station 4C2 BL of Pohang Accelerator Laboratory for Advance in Korean Polymer Science

  • Yoon, Jin-Hwan;Kim, Kwang-Woo;Kim, Je-Han;Heo, Kyu-Young;Jin, Kyeong-Sik;Jin, Sang-Woo;Shin, Tae-Joo;Lee, Byeong-Du;Rho, Ye-Cheol;Ahn, Byung-Cheol;Ree, Moon-Hor
    • Macromolecular Research
    • /
    • v.16 no.7
    • /
    • pp.575-585
    • /
    • 2008
  • There are two beamlines (BLs), 4C1 and 4C2, at the Pohang Accelerator Laboratory that are dedicated to small angle X-ray scattering (SAXS). The 4C1 BL was constructed in early 2000 and is open to public users, including both domestic and foreign researchers. In 2003, construction of the second SAXS BL, 4C2, was complete and commissioning and user support were started. The 4C2 BL uses the same bending magnet as its light source as the 4C1 BL. The 4C1 BL uses a synthetic double multilayer monochromator, whereas the 4C2 BL uses a Si(111) double crystal monochromator for both small angle and wide angle X-ray scattering. In the 4C2 BL, the collimating mirror is positioned behind the monochromator in order to enhance the beam flux and energy resolution. A toroidal focusing mirror is positioned in front of the monochromator to increase the beam flux and eliminate higher harmonics. The 4C2 BL also contains a digital cooled charge coupled detector, which has a wide dynamic range and good sensitivity to weak scattering, thereby making it suitable for a range of SAXS and wide angle X-ray scattering experiments. The general performance of the 4C2 BL was initially tested using standard samples and further confirmed by the experience of users during three years of operation. In addition, several grazing incidence X-ray scattering measurements were carried out at the 4C2 BL.