• Title/Summary/Keyword: harmonic wave

Search Result 448, Processing Time 0.028 seconds

Optical Harmonic Modulation-Demodulation Techniques for High-Speed Light wave Transmission

  • Choi, Young-Kyu
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.192-197
    • /
    • 2008
  • High-speed harmonic optical modulation-demodulation schemes are presented and a possibility of the schemes for applying to high-speed light wave transmission system is tested at microwave frequency range. An example of this concept is as follows : Light wave is modulated succeedingly through cascaded optical modulators by a sub-carrier to produce a modulated light wave at harmonic frequency which is higher than the feasible frequency of the individual modulators. For demodulation of the base-band signal, the high frequency optical sub-carrier is down-converted by the same kind of optical modulator with the same concept of harmonic modulation.

Computation of the inviscid drift force caused by nonlinear waves on a submerged circular cylinder

  • Koh, Hyeok-Jun;Cho, Il-Hyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.201-207
    • /
    • 2011
  • In this paper, we focused on computing the higher-harmonic components of the transmitted wave passing over a submerged circular cylinder to show that it is causing a horizontal negative drift force. As numerical models, a circular cylinder held fixed under free surface in deep water is adopted. As the submergence of a circular cylinder decreases and the incident wavelength becomes longer, the higher-harmonic components of the transmitted wave starts to increase. An increase of the higher-harmonic components of the transmitted wave makes the horizontal drift force be negative. It is also found that the higher-harmonic amplitudes averaged over the transmitted wave region become larger with the increase of wave steepness and wavelength as well as the decrease of submergence depth.

Injection Locked Synchronization Characteristics of a Millimeter Wave Second Harmonic Oscillator (밀리미터파 대역 제2고조파 출력 발진기의 주입동기 특성)

  • Choi, Young-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1700-1705
    • /
    • 2013
  • A second harmonic millimeter wave oscillator utilizing sub-harmonic injection-synchronization is presented. A 8.7GHz oscillator with MES-FET is designed, and is driven as a harmonic output oscillator at 17.4GHz by means of sub-harmonic injection-synchronization. The oscillator operates as a multiplier as well as a oscillator in this scheme. Adopting this method, a high sable, high frequency millimeter wave source is obtainable even though self-oscillating frequency of an oscillator is relatively low. The range of injection-synchronization is about 26MHz, and is proportional to the input sub-harmonic power. The spectrum analysis of the 2nd harmonic output frequency shows remarkably decreased the phase noise level.

Phased Array Behavior of the Coupling of the Millimeter Wave Second Harmonic Oscillator (밀리미터파 대역 제2고조파 발진기 결합계의 위상차 배열 동작)

  • Choi, Young-Kyu;Kim, Gi-Rae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.438-444
    • /
    • 2015
  • A new approach to the active phased arrays for the second harmonic generation is presented. Phase variation between the second harmonic oscillators by the mutual synchronization is analyzed theoretically. In this coupling, the active antenna consists of the FET oscillator which plays two roles in fundamental oscillation and frequency multiplying, and the patch antenna resonated at the second harmonic frequency. The radiated second harmonic wave was scanned by varying the free-running oscillation frequencies of the active antennas. In the experiment using the 2-elements array and the 4-elements array, the radiated beam of the second harmonic wave was scanned more widely compared with the case of the fundamental wave radiation.

Initial Second Harmonic Generation in Narrowband Surface Waves by Multi-Line Laser Beams for Two Kinds of Spatial Energy Profile Models: Gaussian and Square-Like

  • Choi, Sungho;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.3
    • /
    • pp.257-263
    • /
    • 2013
  • Acoustic nonlinearity of surface waves is an effective method to evaluate the micro damage on the surface of materials. In this method, the $A_1$ (magnitude of the fundamental wave) and $A_2$ (magnitude of the second-order harmonic wave) are measured for evaluation of acoustic nonlinearity. However, if there is another source of second-order harmonic wave other than the material itself, the linear relationship between $A_1{^2}$ and $A_2$ will not be guaranteed. Therefore, the second-order harmonic generation by another source should be fully suppressed. In this paper, we investigated the initial second-order harmonic generation in narrowband surface waves by multi-line laser beams. The spatial profile of laser beam was considered in the cases of Gaussian and square-like. The temporal profile was assumed to be Gaussian. In case of Gaussian spatial profile, the generation of the initial second-order harmonic wave was inevitable. However, when the spatial profile was square-like, the generation of the initial second-order harmonic wave was able to be fully suppressed at specific duty ratio. These results mean that the multi-line laser beams of square-like profile with a proper duty ratio are useful to evaluate the acoustic nonlinearity of the generated surface waves.

High Conversion Gain Q-band Active Sub-harmonic Mixer Using GaAs PHEMT

  • Uhm, Won-Young;Lee, Bok-Hyung;Kim, Sung-Chan;Lee, Mun-Kyo;Sul, Woo-Suk;Yi, Sang-Yong;Kim, Yong-Hoh;Rhee, Jin-Koo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.2
    • /
    • pp.89-95
    • /
    • 2003
  • In this paper, we have designed and fabricated high conversion gain Q-band active sub-harmonic mixers for a receiver of millimeter wave wireless communication systems. The fabricated active sub-harmonic mixer uses 2nd harmonic signals of a low local oscillator (LO) frequency. The fabricated mixer was successfully integrated by using $0.1{\;}\mu\textrm{m}$GaAs pseudomorphic high electron mobility transistors (PHEMTs) and coplanar waveguide (CPW) structures. From the measurement, it shows that maximum conversion gain of 4.8 dB has obtained at a RF frequency of 40 GHz for 10 dBm LO power of 17.5 GHz. Conversion gain from the fabricated sub-harmonic mixer is one of the best reported thus far. And a phase noise of the 2nd harmonic was obtained -90.23 dBc/Hz at 100 kHz offset. The active sub-harmonic mixer also ensure a high degree of isolations, which are -35.8 dB from LO-to-IF and -40.5 dB from LO-to-RF, respectively, at a LO frequency of 17.5 GHz.

Stress evaluation of tubular structures using torsional guided wave mixing

  • Ching-Tai, Ng;Carman, Yeung;Tingyuan, Yin;Liujie, Chen
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.639-648
    • /
    • 2022
  • This study aims at numerically and experimentally investigating torsional guided wave mixing with weak material nonlinearity under acoustoelastic effect in tubular structures. The acoustoelastic effect on single central frequency guided wave propagation in structures has been well-established. However, the acoustoelastic on guided wave mixing has not been fully explored. This study employs a three-dimensional (3D) finite element (FE) model to simulate the effect of stress on guided wave mixing in tubular structures. The nonlinear strain energy function and theory of incremental deformation are implemented in the 3D FE model to simulate the guided wave mixing with weak material nonlinearity under acoustoelastic effect. Experiments are carried out to measure the nonlinear features, such as combinational harmonics and second harmonics in related to different levels of applied stresses. The experimental results are compared with the 3D FE simulation. The results show that the generation combinational harmonic at sum frequency provides valuable stress information for tubular structures, and also useful for damage diagnosis. The findings of this study provide physical insights into the effect of applied stresses on the combinational harmonic generation due to wave mixing. The results are important for applying the guided wave mixing for in-situ monitoring of structures, which are subjected to different levels of loadings under operational condition.

High-Performance Millimeter Wave Harmonic Output Oscillator using Sub-Harmonic Wave Injection-Synchronization (서브하모닉 주입동기에 의한 밀리미터파 대역 고조파 발진기의 고성능화)

  • Choi, Young-Kyu;Nam, Byeong-Gun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.17-24
    • /
    • 2008
  • This paper deals with a millimeter wave source which is utilizing sub-harmonic injection-synchronization technique. A 8.7GHz oscillator with MES-FET is fabricated, and is driven as a harmonic output oscillator at 17.4GHz by means of sub-harmonic injection-synchronization. The oscillator operates as a multiplier as well as oscillator in this system. Adopting this technique, we can obtain a high stable, high frequency millimeter wave source even though self-oscillating frequency of an oscillator is relatively low. In the experiments, the range of injection-synchronization is about 26MHz and is proportional to the input sub-harmonic power. From the spectrum analysis of the 2nd harmonic output. we blow that the phase noise of the harmonic oscillator is remarkably decreased.

A Study on the Bicoherence Analysis of Visual Evoked Potential based on AR Model (AR 모델에 의한 견학 유발전위의 Bicoherence분석에 관한 연구)

  • 유병욱;정명진
    • Journal of Biomedical Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.223-230
    • /
    • 1987
  • In this paper the harmonic degrees between $\alpha$ wave and $\beta$ wave in visual evoked potential are analyzed by the bicoherence. The bicoherence analysis is based on an AR model which provides significantly better resolution than that of Fourier transform. The analysis results of visual evoked pope ntial are compared with the analysis results of background EEC. From the comparison results it is found that the harmonic degree of visual evoked potential is less than she harmonic degree of background EEG and the $\beta$ wave of visual evoke potential unlike the background EEC contains the non harmonic property of a wave more than the harmonic properity

  • PDF

INVESTIGATION OF THE COHERENT WAVE PACKET FOR A TIME-DEPENDENT DAMPED HARMONIC OSCILLATOR

  • CHOI JEONG RYEOL;CHOI S. S.
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.495-508
    • /
    • 2005
  • We investigated both classical and quantum properties of a damped harmonic oscillator with a time-variable elastic coefficient using invariant operator method. We acquired the energy eigenvalues, uncertainties and probability densities for several types of wave packet. The probability density corresponding to the displaced minimum wave packet expressed in terms of the time-dependent Gaussian function. The displaced minimum wave packet not only be attenuated but also oscillates about x = 0. We confirmed that there exist correspondence between quantum and classical behaviors for the time-dependent damped harmonic oscillator.