• Title/Summary/Keyword: harmonic loads

Search Result 336, Processing Time 0.025 seconds

Source Model for Harmonic Interaction Analysis between Renewable Energy Generators and Power Distribution System (계통 고조파와 분산형 전원의 상호작용 평가를 위한 고조파 모델에 관한 연구)

  • Cho, Sung-Min;Shin, Hee-Sang;Moon, Won-Sik;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.733-738
    • /
    • 2011
  • As increase of nonlinear loads and renewable energy generators (REGs) being connected to power distribution system via inverters, the concern on harmonic problems have increased. Recently, the harmonics evaluation method considering TDD (Total Demand Distortion) is used to analyze the effect of harmonics from inverters on power distribution quality. Harmonic current sources are typically used for simulation of nonlinear load. Most inverter type for REGs is voltage source inverter (VSI). So, harmonic voltage sources are more suitable to analyze impact of renewable energy generator on harmonics problem in power distribution system. In this paper, we presented the circuit model to analyze interaction between harmonics from nonlinear load and REGs. We verified that the harmonic analysis using the proposed circuit model is more appropriate than the harmonics evaluation method considering TDD through case study using PSCAD/EMTDC.

Technical Trend on Excitation Capacitors on Harmonic Amplification of Wind Induction Generator (풍력 유도발전기의 여자 축전지에 따른 고주파 증폭에 관한 기술 동향)

  • Rho, Sang-Pil;Park, Jung-Seok;Lee, Young-Gil;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1976-1977
    • /
    • 2007
  • This paper introduce the electrical quantities of a three-phase-connected wind induction generator (WIG) under sudden connection of static loads. An intelligent power-system recorder/monitor is employed to measure threephase voltages and currents of the studied system at WIG's terminals and load's terminals for 5 minutes. A laboratory 300 W wound-rotor induction machine driven by a blushless DC motor is utilized as the studied WIG. Since the generated harmonic currents are randomly varied, total harmonic distortion (THD) of current using cumulative probability density function is employed to determine the penetration of harmonic distortion. The results show that the harmonic currents generated by the studied WIG may be severely amplified to a high level by the connected self-excited capacitance at the stator's terminals.

  • PDF

The Ground Impedance Modeling for Neutral Harmonic Analysis by Field Tests (현장시험에 의한 중성선 고조파 해석용 접지 임피던스 모델링)

  • Kim Kyung Chul;Park Seung Hyun;Choi Jong Ki;Lee Il Moo;Kim Jong Uk
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.369-371
    • /
    • 2004
  • With the proliferation of nonlinear loads, high neutral harmonic currents in three-phase four-wire distribution system have been observed. It has been. known that the ground impedance has an effect on the neutral currents of a system which operates with harmonics present. On-site measurements of harmonic currents and voltages according to the fell-of-potential method under case study system were made and the ground impedance modeling using the pattern search method for the harmonic analysis was developed. The ground impedance model obtained by the proposed method was compared with the frequency characteristics by field tests and has shown appropriate results, and would be applicable to evaluate the harmonic and transient response characteristics of the ground system.

  • PDF

Analysis of Harmonic Effects on Substation Power System and its Countermeasure (지하철 전력계통의 고조파 영향 분석 및 그 대책에 관한 연구)

  • Song, Jin-Ho;Hwang, Yu-Mo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.4
    • /
    • pp.210-220
    • /
    • 2002
  • We analysised the effect of harmonics on electric machines of substation power system barred on quantitatively measured harmonics and proposed the methods for prevention of harmonics through checking on transformer, rectifier and cable's capacities against harmonics with reference to KEPCO's electricity service standard. In order to analysis harmoninics of silicon rectifier that is power source in DC substation, computer simulations for a substation with TR of high voltage distribution switchboard are performed. Simulation results show that the total harmonic distortion factor becomes smaller for TR primary and receiving points in order rather than silicon rectifier which is harmonic generation source so that the harmonics generated frets each rectifier are outflowed to power supply and high voltage distribution switchboard The result of higher distortion factors of voltage and current for rectifier with 100% load than those with 50 % and 30% indicates that the waveform of voltage and current for the real substation power system at the office-going and the closing hours with heavy loads might be more distorted. As proposed methods for harmonic reduction, the conventional 6 pulse-type for substation is required to be replaced by 12 pulse-type for reduction of 5th and 7th harmonics. The active filter rather than the passive filter is more effective due to severe variance of rectifier loads, but the high cost is price to be paid. In view of installation area and costs, the use of 12 pulse-type transformer is desirable and then the parallel transformer and the rectifier within the substation must be replaced at the same time. Other substations with parallel feeder can use 6 pulse-type transformer.

Operation Analysis of Induction Motor under the Combination of Linear & Non-linear Loads (선형 및 비선형 부하 혼합 운전시 유도전동기의 동작 분석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Dong-Ju;Kim, Jun-Ho;Lee, Jong-Han;Jeong, Jong-Ho;Lee, Eun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.65-67
    • /
    • 2006
  • This paper presents a scheme on the characteristics of induction motor under the combination of linear & non-linear loads at the three phase 4-wire power distribution system. Under the combination operation of single & three phase load, voltage unbalance will be generated and current unbalance will be more severe by the dropped voltage quality. All power electronic converters used in different types of electronic systems can increase harmonic disturbances by injecting harmonic currents directly into the feeder grid of three phase 4-wire. Harmonic current may cause torque to decrease. Motors may also overheat or become noisy and torque oscillation in the rotor can lead to mechanical resonance and vibration.

  • PDF

A Study on the Equivalent Circuit Modeling for Harmonics Analysis by Field Tests (현장시험에 의한 고조파 해석용 등가회로 모델링에 관한 연구)

  • 김경철;최종기;백승현;김종욱
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.4
    • /
    • pp.60-67
    • /
    • 2004
  • With the proliferation of nonlinear loads, high neutral harmonic currents in three-phase four-wire distribution system have been observed It has been also known that the ground impedance has an effect on the neutral currents of a system which operates with harmonics present. On-site measurements of harmonic currents and voltages, and the soil resistivity and ground resistance under case study system were made and the corresponding equivalent circuit for the harmonics analysis was developed This equivalent circuit model was simulated numerically and graphically through the use of MATLAB and CDEGS software packages, and adequate results were obtained.

Characteristic Analysis of Power Compensation Condenser Considering Voltage Harmonics (전압 고조파를 고려한 역률보상용 콘덴서의 특성 분석)

  • Kim, Jong-Gyeum;Lee, Dong-Ju
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.141-145
    • /
    • 2010
  • Most of the industrial loads includes the non-linear load as well as the linear load because there are many kinds of power conversion equipments at the input stage of the load in distribution network. The non-linear load causes the distortion of voltage waveform at PCC because the non-linear load generates the harmonic current. As a result, various voltage harmonics are existed at PCC depending on the current harmonics from the non-linear load. And, a series reactor is generally connected to the power capacitor in series to attenuate the distortion of voltage waveform and to reduce an inrush current of power capacitor. Also, harmonic current of power capacitor is highly dependent on the series reactor because it is operated with the power capacitor as a passive filter against nonlinear loads. Then, these capacitors might be damaged by the excessive voltage and current harmonic components. In this paper, we presented how to select the capacitor and series reactor to meet the requirement of the voltage distortion at PCC and analyzed the voltage, current and capacity rating of the power capacitor by the computer simulation to ensure the safe operation of power capacitor when the voltage harmonics at PCC are existed. Also, the analysis data were compared with the experimental measurements for the verification.

Development of the Harmonics Reduction and Energy Saving Equipment in Variable Loads (부하변동 시의 고조파제거 및 절전기 개발)

  • Song, Young-Bok;Cho, Yong-Hyun;Choi, Dong-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.6
    • /
    • pp.87-95
    • /
    • 2006
  • In this study, in order to obtain high qualify of electric power, single phase active filter which is composed of Zig-Zag transformer and three phase bridge rectifier and capacitor at the secondary of its transformer to be able to reduce the components of the zero phase current and the third harmonic current in neutral line and power line respectively. By connecting this filter to the Zig-Zag transformer and nonlinear load, their third harmonic components due to the nonlinear loads were reduced.

Intelligent Coordination Method of Multiple Distributed Resources for Harmonic Current Compensation in a Microgrid

  • Kang, Hyun-Koo;Yoo, Choel-Hee;Chung, Il-Yop;Won, Dong-Jun;Moon, Seung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.834-844
    • /
    • 2012
  • Nonlinear electronic loads draw harmonic currents from the power grids that can cause energy loss, miss-operation of power equipment, and other serious problems in the power grids. This paper proposes a harmonic compensation method using multiple distributed resources (DRs) such as small distributed generators (DGs) and battery energy storage systems (BESSs) that are integrated to the power grids through power inverters. For harmonic compensation, DRs should inject additional apparent power to the grids so that certain DRs, especially operated in proximity to their rated power, may possibly reach their maximum current limits. Therefore, intelligent coordination methods of multiple DRs are required for efficient harmonic current compensation considering the power margins of DRs, energy cost, and the battery state-of-charge. The proposed method is based on fuzzy multi-objective optimization so that DRs can cooperate with other DRs to eliminate harmonic currents with optimizing mutually conflicting multi-objectives.

Dynamical behavior of generalized thermoelastic diffusion with two relaxation times in frequency domain

  • Sharma, Nidhi;Kumar, Rajneesh;Ram, Paras
    • Structural Engineering and Mechanics
    • /
    • v.28 no.1
    • /
    • pp.19-38
    • /
    • 2008
  • A general solution to the field equations of homogeneous isotropic generalized thermoelastic diffusion with two relaxation times (Green and Lindsay theory) has been obtained using the Fourier transform. Assuming the disturbances to be harmonically time.dependent, the transformed solution is obtained in the frequency domain. The application of a time harmonic concentrated and distributed loads have been considered to show the utility of the solution obtained. The transformed components of displacement, stress, temperature distribution and chemical potential distribution are inverted numerically, using a numerical inversion technique. Effect of diffusion on the resulting expressions have been depicted graphically for Green and Lindsay (G-L) and coupled (C-T) theories of thermoelasticity.