• Title/Summary/Keyword: harmonic extension

Search Result 32, Processing Time 0.018 seconds

Compensation of Voltage Drop Using the TSC-SVC in Electric Railway Power Supply System (전기철도 AT 급전시스템에서의 TSC-SVC를 이용한 전압강하 보상)

  • 정현수;방성원;김진오
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.3
    • /
    • pp.29-36
    • /
    • 2002
  • Recently, power quality problems in AC high-Speed Railway system have been raised, because heavy train and its higher speed are required in addition to new control system by using the Electronic devices. The installation/operation of the Series Capacitor(SC) has been only a device far voltage drop in power system up to now. However, the sufficient effectiveness of compensating In voltage drop has not been proved yet because of technical limitationf SC, and harmonic resonance is attracting a attention as one of new issues. Several problems are expected such as vocational problems of a traction substation, and overloading caused by a new construction of electric railway and the in transport. Therefore, extension of power feeding the fault in the traction substation should be also considered. So this paper represents the application of TSC-SVC on the electric railway power feeding system as a device of voltage compensation, and the simulations are executed through PSCAD/EMTDC.

Blind Rhythmic Source Separation (블라인드 방식의 리듬 음원 분리)

  • Kim, Min-Je;Yoo, Ji-Ho;Kang, Kyeong-Ok;Choi, Seung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.8
    • /
    • pp.697-705
    • /
    • 2009
  • An unsupervised (blind) method is proposed aiming at extracting rhythmic sources from commercial polyphonic music whose number of channels is limited to one. Commercial music signals are not usually provided with more than two channels while they often contain multiple instruments including singing voice. Therefore, instead of using conventional modeling of mixing environments or statistical characteristics, we should introduce other source-specific characteristics for separating or extracting sources in the under determined environments. In this paper, we concentrate on extracting rhythmic sources from the mixture with the other harmonic sources. An extension of nonnegative matrix factorization (NMF), which is called nonnegative matrix partial co-factorization (NMPCF), is used to analyze multiple relationships between spectral and temporal properties in the given input matrices. Moreover, temporal repeatability of the rhythmic sound sources is implicated as a common rhythmic property among segments of an input mixture signal. The proposed method shows acceptable, but not superior separation quality to referred prior knowledge-based drum source separation systems, but it has better applicability due to its blind manner in separation, for example, when there is no prior information or the target rhythmic source is irregular.