• Title/Summary/Keyword: harmonic drive

Search Result 211, Processing Time 0.039 seconds

Microstepping drive of 3 phase multi-stack VR type step motor (3상 VR 형 스텝 모터의 미세스텝 구동 특성에 관한 연구)

  • Lee, Sung-Joo;Won, Jong-Su
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.21-23
    • /
    • 1988
  • Microstepping drive of 3 phase VR step motor with 2 phase exciting scheme is proposed. Considering the presence of harmonic components of inductance, the current reference is calculated. The experimental results show high accuracy of divided step position and resonance or instability in operating range.

  • PDF

Improvement of Thrust Force Characteristics by Micro-step Drive of 2 Phase 8 Pole HB type LPM (2상 8극 HB형 LPM의 마이크로스텝 구동에 의한 추력특성 개선)

  • Kim, Sung-Heon;Lee, Eun-Woong;Kim, Il-Jung;Jo, Hyun-Gil;Lee, Dong-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.140-142
    • /
    • 1997
  • After finding the harmonic components by measuring the thrust force, which affects high accuracy position control during micro-step drive of LPM, the exciting current was calculated to remove them. Also the detent force being induced by magnetic flux density of permanent magnetic was measured. It was comfirmed that the tooth and slot width was designed properly thresh the analysis of detent force.

  • PDF

Dynamic Characterizations of a Piezoelectric Microactuator in Hard Disk Drive (HDD용 압전형 마이크로엑츄에이터의 동특성 규명)

  • Kim, Cheol-Soon;Kim, Kyu-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.232-236
    • /
    • 2000
  • To provide model parameters for servo control system design, dynamic characteristics of a piezoelectric microactuator for hard disk drive(HDD) were investigated. At first frequency response characteristics was measured and a second order model was proposed. Here the amplitude dependent dynamic characteristics such as low frequency gain and damping ratio were studied. In addition, the load current and equivalent impedance of the piezoelectric actuator were measured by varying excitation voltage and frequency. At last, the super-harmonic resonance of the piezoelectric actuator was discussed.

  • PDF

Analysis of Cascaded H-Bridge Multilevel Inverter in DTC-SVM Induction Motor Drive for FCEV

  • Gholinezhad, Javad;Noroozian, Reza
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.304-315
    • /
    • 2013
  • In this paper, analysis of cascaded H-bridge multilevel inverter in DTC-SVM (Direct Torque Control-Space Vector Modulation) based induction motor drive for FCEV (Fuel Cell Electric Vehicle) is presented. Cascaded H-bridge multilevel inverter uses multiple series units of H-bridge power cells to achieve medium-voltage operation and low harmonic distortion. In FCEV, a fuel cell stack is used as the major source of electric power moreover the battery and/or ultra-capacitor is used to assist the fuel cell. These sources are suitable for utilizing in cascaded H-bridge multilevel inverter. The drive control strategy is based on DTC-SVM technique. In this scheme, first, stator voltage vector is calculated and then realized by SVM method. Contribution of multilevel inverter to the DTC-SVM scheme is led to achieve high performance motor drive. Simulations are carried out in Matlab-Simulink. Five-level and nine-level inverters are applied in 3hp FCEV induction motor drive for analysis the multilevel inverter. Each H-bridge is implemented using one fuel cell and battery. Good dynamic control and low ripple in the torque and the flux as well as distortion decrease in voltage and current profiles, demonstrate the great performance of multilevel inverter in DTC-SVM induction motor drive for vehicle application.

Nonlinear Analysis of Gear Drive System due to Misalignment (정렬불량에 의한 기어 구동계 비선형 해석)

  • Lee, B.H.;Choi, Y.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.31-36
    • /
    • 2002
  • Even through the problem of misalignment is of great importance, not much work has been reported in the literature on the effect of misalignment on the vibrations of the gear-bearing systems. Therefore, the nonlinear dynamic characteristics of the gear drive system due to misalignment are investigated in this work. Transmission error for helical gear and bearing nonlinear stiffness is calculated. The equation of motion of the gear drive system is modelled using the time-varying gear meshing stiffness, bearing nonlinear stiffness, and bearing pre-load due to the housing deformation. Numerical analysis lot the gear drive system show the result of misalignment effect - sub-harmonic component, bearing pre-load effect, and another nonlinear phenomenon. And the numerical analysis are verified by the experimental result.

  • PDF

Application of Bacterial Foraging Algorithm and Genetic Algorithm for Selective Voltage Harmonic Elimination in PWM Inverter

  • Maheswaran, D.;Rajasekar, N.;Priya, K.;Ashok kumar, L.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.944-951
    • /
    • 2015
  • Pulse Width Modulation (PWM) techniques are increasingly employed for PWM inverter fed induction motor drive. Among various popular PWM methods used, Selective Harmonic Elimination PWM (SHEPWM) has been widely accepted for its better harmonic elimination capability. In addition, using SHEPWM, it is also possible to maintain better voltage regulation. Hence, in this paper, an attempt has been made to apply Bacterial Foraging Algorithm (BFA) for solving selective harmonic elimination problem. The problem of voltage harmonic elimination together with output voltage regulation is drafted as an optimization task and the solution is sought through proposed method. For performance comparison of BFA, the results obtained are compared with other techniques such as derivative based Newton-Raphson method, and Genetic Algorithm. From the comparison, it can be observed that BFA based approach yields better results. Further, it provides superior convergence, reduced computational burden, and guaranteed global optima. The simulation results are validated through experimental findings.

A New Waveshaper for Harmonic Mitigation in Vector Controlled Induction Motor Drives

  • Singh, Bhim;Garg, Vipin;Bhuvaneshwari, G.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.152-161
    • /
    • 2008
  • This paper deals with a new wave shaping technique for cost effective harmonic mitigation in ac-dc converter feeding Vector Controlled Induction Motor Drives(VCIMD's) for improving power quality at the point of common coupling(PCC). The proposed harmonic mitigator consists of a polygon connected autotransformer based twelve-pulse ac-dc converter and a small rating passive shunt filter tuned for $11^{th}$ harmonic frequency. This ac-dc converter eliminates the most dominant $5^{th},\;7^{th},\;and\;11^{th}$ harmonics and imposes the reduction of other higher order harmonics from the ac main current, thereby improving the power quality at ac mains. The design of autotransformer is carried out for the proposed ac-dc converter to make it suitable for retrofit applications, where presently a 6-pulse ac-dc converter is used. The effect of load variation on VCIMD is also studied to demonstrate the effectiveness of the proposed ac-dc converter in a wide operating range of the drive. Experimental results obtained on the developed laboratory prototype of the proposed harmonic mitigator are used to validate the model and design of the ac-dc converter.

Improved Randomized Pulse Position PWM Scheme Based on The three-phase Indui Drive To Reduce the Harmonic Effect (개선된 Randomized Pulse Position PWM기법을 이용한 3상 유도 전동기의 고조파 영향)

  • Ha, Sang-Mok;Han, Woo-Yong;Lee, Chang-Goo;Kim, Byung-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1169-1171
    • /
    • 2002
  • In this paper, RFRPP(Random Frequency Randomized Pulse Position ) PWM for three-phase voltage-controlled inverters is proposed. The LLPWM(Lead-Lag PWM) techinquc is that three switching pulses are located randomly back and forth in each switching interval. But with the restriction of random distribution, the harmonic spectrum cannot be dispersedly and continuously distributed. This paper calculates the duty ratio of the switching pulse firstly. Second, the switching pulses are located randomly in the switching interval. Third, the fixed switching frequency of the space vector modulation is randomly varied. To verify the validity of the proposed technique, simulation study is tried using Matlab/Simulink. When a proposed techniquc is employed, the harmonic spectrum of the inverter output voltagc varies from one cycle to the next and the EMI(Electromagnetic Interference) and resonant vibration are greatly alleviated.

  • PDF

Z-Source Dynamic Harmonic Filter with Four Switches (4개 스위치를 갖는 Z-소스 동적 고조파 필터)

  • Qiu, Xiao-Dong;Jung, Young-Gook;Lim, Young-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.254-255
    • /
    • 2013
  • In this paper, four switches three-phase Z-source dynamic harmonic filter is proposed. It has many advantages, such as reduction of the cost, switching loss and smaller drive circuit. In order to reduction harmonics, new PWM modulation technique with a variable index has been suggested that in comparison with a fixed index type has more capability. The paper presents an application of direct current control(DCC) method in Z-source dynamic harmonic filter to reduce the harmonics generated by the non-linear load. The experimental results will verify the validity of the proposed method.

  • PDF

Vector Control System of Induction Motor Using the Third Harmonic Component of the Stator Voltage (고정자 전압의 제3고조파 성분을 이용한 유도전동기의 벡터제어 시스템)

  • Ro, Ea-Sug;Jung, Jong-Jin;Kim, Heung-Geun
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.479-481
    • /
    • 1994
  • A direct vector control system of induction machine based determination of the spatial position of the airgap flux from the third harmonic component of the stator voltage is presented in this paper. The Rotor flux, necessary in direct vector control system, is estimated with the stator current and the airgap flux acquired from the third harmonic component of the stator voltage. And it will be used as an important information to implement the vector control system of the induction motor drive.

  • PDF