• Title/Summary/Keyword: harmful material

Search Result 341, Processing Time 0.025 seconds

The Analysis on the Work Environment and Working Clothes Wearing Conditions of Shipyard Painters (조선소 도장작업자의 작업환경 및 작업복 착의실태 분석)

  • Bae, Hyun-Sook;Park, Hye-Won;Park, Gin-Ah
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.3
    • /
    • pp.518-528
    • /
    • 2010
  • This study analyzes the work environment and the work clothes wearing conditions of shipyard painters. In addition to this, three types of experimental painting work clothes were evaluated by painters in terms of the material performance and wearing functions. The findings on the harmful painting work environmental factors were organic solvents, noise, heavy dust, high temperatures, and noxious fumes. The body parts damaged during painting operations were the skin, arms, whole body, and face. In general, the satisfaction with the wearing performance of work clothes for painting was low especially in regards to sweat absorbency, sweat permeability, body protection, covering, and the work motion suitability. The satisfaction with the wearing sense of painting working clothes (regardless of the type of material) was high in the order of movement comfort> sensual comfort> physiological comfort. The satisfaction in overall comfort according to the types of material was high in the order of nylon> SMS nonwoven fabric> SF nonwoven fabric.

Study on Status of Utilizing 3D Printing in Fashion Field (패션분야의 3D 프린팅 활용 현황에 관한 연구)

  • Kim, Hyo-Sook;Kang, In-Ae
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.17 no.2
    • /
    • pp.125-143
    • /
    • 2015
  • This study has investigated the status of utilizing 3D printing in fashion field in order to keep up with the trend for 3D printing technology to be realized in all industries so that the materials and the modeling modes may be figured out. The following is the findings. The materials used most in 3D printing in fashion field are PA, PLA, TPU, multi-material, ABS and metal. PA, TPU and Multi-material have so much excellent flexibility and strength that they are widely used for garment, shoes and such fashion items as bags. But PLA, ABS and metal are scarcely used for garment because PLA is easily biodegradable in the air, ABS generates harmful gas in the process of manufacture and metal is not flexible, while all of these three are partly used for shoes and accessories. The modeling modes mainly applied for 3D printing in fashion field are SLS, SLA, FDM and Polyjet. SLS, which is of a powder-spraying method, is used for making 3D textile seen just like knitting. Polyjet method, which has higher accuracy and excellent flexibility, can be used for expressing diverse colors, and accordingly it is used a lot for high-quality garment, while SLA and FDM method are found to be mostly used for manufacturing shoes and accessories rather than for making garment because they are easily shrunk to result in deformation.

  • PDF

The Surface Properties and Wear Resistance of Cr-Mo-V Steel by Salt bath Process after Pseudo-electrolysis (의(擬)전기분해식 염욕질화처리를 통한 Cr-Mo-V강의 내마모와 표면성질에 관한 연구)

  • Jung, Gil Bong;Yoon, Jae Hong;Hur, Sung Kang
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.3
    • /
    • pp.225-234
    • /
    • 2010
  • Salt bath nitriding, which has been developed recently by domestic company, is an emerging ecofriendly surface treatment. The salt bath nitriding is accompanied by the electrolysis process in the pretreatment step, and this whole processis called Pseudo-Electrolysised Salt bath Nitriding (PESN). The PESN creates only $NH_3$ and non-toxic salts without harmful $CN^{-}$ or toxic gas such as that found in previous salt bath nitriding. In general, ion nitriding and gas nitriding create high hardness and a strong brittle white layer on the surface. However, the PESN shows a thin white and gray layer. The PESN was applied to the defense material, 3%Cr-Mo-V steel, to study the surface characteristics at $480^{\circ}C$, $530^{\circ}C$, and $580^{\circ}C$ for 4 hrs, 20 hrs, 40 hrs, and 60 hrs of nitriding time condition. As a result, the best nitriding layer was found at $530^{\circ}C$ for 40 hrs. If we improve corrosion resistance and nitriding layer depth, the PESN will be able to be applied to the defense industry parts.

Predicting residual moment capacity of thermally insulated RC beams exposed to fire using artificial neural networks

  • Erdem, Hakan
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.711-716
    • /
    • 2017
  • This paper presents a method using artificial neural networks (ANNs) to predict the residual moment capacity of thermally insulated reinforced concrete (RC) beams exposed to fire. The use of heat resistant insulation material protects concrete beams against the harmful effects of fire. If it is desired to calculate the residual moment capacity of the beams in this state, the determination of the moment capacity of thermally insulated beams exposed to fire involves several consecutive calculations, which is significantly easier when ANNs are used. Beam width, beam effective depth, fire duration, concrete compressive and steel tensile strength, steel area, thermal conductivity of insulation material can influence behavior of RC beams exposed to high temperatures. In this study, a finite difference method was used to calculate the temperature distribution in a cross section of the beam, and temperature distribution, reduction mechanical properties of concrete and reinforcing steel and moment capacity were calculated using existing relations in literature. Data was generated for 336 beams with different beam width ($b_w$), beam account height (h), fire duration (t), mechanical properties of concrete ($f_{cd}$) and reinforcing steel ($f_{yd}$), steel area ($A_s$), insulation material thermal conductivity (kinsulation). Five input parameters ($b_w$, h, $f_{cd}$, $f_{yd}$, $A_s$ and $k_{insulation}$) were used in the ANN to estimate the moment capacity ($M_r$). The trained model allowed the investigation of the effects on the moment capacity of the insulation material and the results indicated that the use of insulation materials with the smallest value of the thermal conductivities used in calculations is effective in protecting the RC beam against fire.

Development of Certified Reference Materials for Analysis of Heavy Metals in Paints to Cope with Environmental Regulations (환경규제 대응을 위한 페인트 중의 중금속 분석용 인증 표준물질 개발)

  • Yu, Byung Kyu;Sun, Yle Shik
    • Journal of Environmental Analysis, Health and Toxicology
    • /
    • v.21 no.4
    • /
    • pp.209-219
    • /
    • 2018
  • In the areas of RoHS, WEEE, ELV and REACH, reinforcement of environmental regulations against harmful substances is a global trend not only in EC but also in all over the world. In the fields of Korea's major export products such as material parts, electrical and electronic products and automobile parts, we are responding to these regulations consistently. To develop reference material for analyzing lead and cadmium in paints, the candidate materials were produced through the screening process which separated shapes and sizes. To secure the traceability of the candidate materials produced, the characteristics and uncertainties are estimated by ICP-AES analysis using the primary reference material. The short-term and long-term stabilities also are evaluated in parallel. In order to calculate the final certification value of the candidate material, the verification were carried out by the performance evaluation through the comparison among the KOLAS (Korea Laboratory Accreditation Scheme) laboratories, and the CRM was produced in accordance with ISO Guide 35. The certified values and uncertainties of Pb and Cd of the final paint standard, determined according to the joint analysis among laboratories, are Pb [($191.4{\pm}3.1$) mg/kg, ($944.1{\pm}5.6$) mg/kg] and Cd [($45.0{\pm}2.6$) mg/kg, ($225.5{\pm}3.5$) mg/kg]. These standard materials were developed to enhance the reliability of measurement analysis, including the validity and traceability of measurement results. Also it is expected that the CRM will be used as QCM (quality control material) for the product design and the process monitoring, so that regulation and management of hazardous heavy metals can be systematically implemented.

The Study on the Indoor Air Quality in a Newly Built Apartment Rouse by Field Measuring (실측을 통한 신축공동주택의 실내공기질에 관한 연구)

  • Lee Kyung-Hee;Bae Jong-Soo;Cho Sung-Woo;Park Min-Yong;Park Chang-Sub;Choi Jeong-Min
    • Journal of the Korean housing association
    • /
    • v.17 no.4
    • /
    • pp.111-117
    • /
    • 2006
  • The harmfulness of HCHO and VOCs from construction material and furniture has been increased gradually. It must be need to prevent pollution materials' accumulation indoor effectively and to remove very small amount of harmful pollution materials in various plans, because these kinds of pollution materials greatly affect human body, Therefore, this study is focused to find out the improvements of Indoor Air Quality in execution of natural ventilation and bakeout to reduce indoor chemical pollution materials or not. After effects of indoor air quality by natural ventilation and bake-out being examined, it is follows the conclusion. As for the density change of TVOC and Toluene according to time lapse, in case the middle and high-story areas have bake-out, the density increased once, but it showed the gradual decrease after bake-out was stopped, and it was shown that it exceeded the standards recommended for newly built apartment. The bake-out is effective to discharge the HCHO and TVOC from the construction material and the furniture, and the natural ventilation is effective remove the indoor pollution materials.

Decomposition of Harmful Materials by SPCP Discharge (연변방전에 의한 유해물질의 분해제거)

  • 우인성;황명환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.11
    • /
    • pp.1043-1048
    • /
    • 1998
  • The decomposition performance of the Surface induced Plasma Chemical Processing(SPCP) for benzene, toluene, xylene and $NO_2$ were experimentally examined. Discharge exciting frequency range was 5kHz and 10kHz, and low frequency discharge requires high voltage to inject high electric power in gas and to decompose contaminants. The decomposition rate of dioxide nitrogen for 5kHz power in gas and to decompose contaminants. The decomposition rate of dioxide nitrogen for 5kHz power supply is only 85%, but it’s rate for 10kHz power supply is very high, more than 96% when peak voltage is 12kv. Aromatic hydrocarbon vapor of up to 1000ppm is almost throughly decomposed at the flow rate of 1000$\ell$/min or lower rate under the discharge with electric power of several hundred watts. High decomposition rate is shown in every case, that is, for SPCP reactor is necessary to obtain the decomposition rate of more than 80~98%. The decomposition rate of benzene, toluene and xylene were 90~98% and dioxide nitrogen was 45~96%.

  • PDF

Evaluation of Thermal Behavior of Oil-based $Al_2O_3$ Nanofluids (오일 기지 알루미나 나노유체의 열적거동 평가)

  • Choi, Cheol;Yoo, Hyun-Sung;Oh, Je-Myung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.176-177
    • /
    • 2006
  • Two kinds of alumina nanofluids are prepared by dispersing $Al_2O_3$ nanoparticles m transformer oil. The thermal conductivity of the nanoparticle-oil mixtures increases with particle volume fraction and thermal conductivity of the solid particle itself. The $Al_2O_3$ nanoparticles at a volume of 0.5% can increase the thermal conductivity of the transformer oil by 5.7%, and the overall heat transfer coefficient by 20%. From the natural convection test using a prototype transformer, the cooling effect of $Al_2O_3$-oil nanofluids on the heating element and oil itself is confirmed. However, excessive quantities of the surfactant have a harmful effect on viscosity, and thus it is strongly recommended to control the addition of the surfactant with great care.

  • PDF

The Prediction and Evaluation of Contamination in the Large Clean Room for Manufacturing Electronic Components (대형 클린룸내 전자부품 생산공정에서의 이물전이 예측을 위한 기류해석에 관한 연구)

  • Jeong, Gi-Ho;Shin, An-Seob;Park, Chang-Sik;Byun, Hyang-Eun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.202-202
    • /
    • 2008
  • The world gross market of many kinds of electronics, such as TV and mobile phone has been increasing rapidly these days. It is mainly caused by the amazing developments of IT technology during past decade and the changes of individual life style for the better. Thanks to the increases of electronics manufactured in quantity, much more electronic components such as MLCC (multi layer ceramic capacitor) and PCB (printed circuit board), which are our main products, have been needed as a consequence. Though it was reported that total market of electronic components exceeds several hundreds of billion dollars, there are many manufactures struggling for survival in the competition of electronics components. Then the recognition of quality as a key technology has spread and the efforts for high-yield production lines have been kept in many companies. In this paper, our efforts to eliminate the contamination of particles and the diffusion of some volatile organic compounds which is very harmful to workers at production line have been introduced.

  • PDF

Infill Print Parameters for Mechanical Properties of 3D Printed PLA Parts (3D 프린팅으로 출력된 PLA 시편의 채움 밀도에 따른 기계적 물성 평가)

  • Seol, Kyoung-SU;Zhao, Panxi;Shin, Byoung-Chul;Zhang, Sung-Uk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.9-16
    • /
    • 2018
  • Recently, the demand for eco-friendly parts has increased to reduce materials and parts that use fossil fuels. This has exacerbated the increase of energy prices and the enforcement of regulations by environmental agencies. Currently, polylactic acid (PLA) is a solution, as a common and eco-friendly material. PLA is a biodegradable material that can replace traditional petrochemical polymers. PLA has great advantages since it is resistant to cracking and shrinkage. When it is manufactured, there are few harmful byproducts. Improvement in the brittleness characteristics is another important task to be monitored throughout the production of industrial parts. Improvement in the brittleness property of products lowers the tensile strength and tensile elasticity modulus of the parts. This study focused on the mechanical properties of 3D-printed PLA parts. Tensile tests are performed while varying the infill print parameters to evaluate the applicability of PLA in several industrial areas.