• Title/Summary/Keyword: hardwood pulp

Search Result 95, Processing Time 0.025 seconds

The Effect of Hydrogen Peroxide Bleaching on the Properties of Hardwood Kraft Pulp Absorbed with Birchwood Xylan

  • Li, Lizi;Lee, Sang-Hoon;Lee, Hak-Lae
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2010.04a
    • /
    • pp.195-206
    • /
    • 2010
  • Xylan can be applied to improve the strength properties of paper; however the optical properties, such as brightness, are decreased significantly. To solve that problem, an applicable bleaching process is therefore desired. The aim of this research was to investigate the impact of hydrogen peroxide bleaching on hardwood kraft pulp pretreated with birchwood xylan by measuring optical properties (whiteness, brightness, opacity) as well as physical properties (tensile index, tearing index, bulk) of handsheets made from the bleached pulp. Hydrogen peroxide bleaching, as a kind of totally chlorine free (TCF) bleaching method, is quite important industrially for chemical pulp. In our work, the process variables of peroxide bleaching including bleaching temperature, time, initial pH and $MgSO_4$ dosage were studied. The results showed that both good mechanical properties and optical properties could be achieved when the operating parameters were controlled properly and therefore hydrogen peroxide bleaching was proved to be a suitable method for bleaching hardwood kraft pulp with adsorption of birchwood xylan.

  • PDF

Effects of Alkaline Treatment on the Characteristics of Chemical Pulps for Papermaking (알칼리 처리가 제지용 화학펄프의 특성에 미치는 영향)

  • Won, Jong-Myoung;Kim, Min-Hyun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.3
    • /
    • pp.106-112
    • /
    • 2011
  • The effects of alkaline treatment on the WRV, crystalline structure and sheet structure of softwood and hardwood bleached kraft pulp were investigated. Sodium hydroxide and sodium carbonate were used as chemicals for alkaline treatment and two levels of alkali dosage (5%, 10%) were applied respectively. Alkali treated and untreated pulp were refined to three levels (550, 450 and 350 mL CSF). WRV of the alkali treated pulps depended on the alkaline type and concentration. It was found that the crystalline structures of softwood and hardwood pulp were not changed by refining. Sodium carbonate and lower concentration of sodium hydroxide treatment did not caused any modification of cellulose crystalline structure, while higher concentration of sodium hydroxide treatment caused the partial modification of cellulose crystalline structure. Alkaline treatment of hardwood bleached kraft pulp led to the shrinkage of fiber diameter and bulky structure of sheet. Alkaline treatment of softwood bleached kraft pulp did not cause the significant change in fiber shrinkage and bulk of sheet.

Application of Microorganism to Pulping and Bleaching Processes (펄프 및 표백공정(漂白工程)에서의 미생물응용(微生物應用))

  • Sakai, Koki
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.67-78
    • /
    • 1992
  • The application of white-rot fungi to pulping and bleaching processes has been studied at the Wood Chemistry Laboratory in Kyushu University, cooperatively with the Biotechnology Laboratory of Kobe Steel, Ltd. Some successful results of the studies for a biomechanical pulping process, biobleaching of hardwood and softwood kraft pulp, as well as chlorine free biobleaching of oxygen-prebleached hardwood kraft pulp are dealt with. Biological treatment of the pulp bleaching effluent is also described.

  • PDF

Bleaching of Kraft Pulp with Lignin - Degrading Enzymes

  • Harazono, Koich;Kondo, Ryuichrto;Sakai, Kokki
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.2
    • /
    • pp.83-90
    • /
    • 1997
  • An unbleached hardwood kraft pulp was bleached in vitro with partially purified manganese peroxidase (MnP) from the fungus Phanerochaete sordida YK-624 without the addition of MnSO$_4$ in the presence of oxalate, malonate or gluconate known as manganese chelator, When the pulp was treated without the addition of MnSO$_4$, the pulp brightness increased by about 10 points in the presence of 2 mM oxalate, but the brightness did not significantly increase in the presence of 50 mM malonate. Residual MnP activity decreased faster during the bleaching with MnP without MnSO$_4$ in the presence of malonate than in the presence of oxalate. Oxalate reduced MnO$_2$ which already existed in the pulp or was produced from $Mn^{2+}$ by oxidation with MnP and thus supplied $Mn^{2+}$ to the MnP system. Thus, bleaching of hardwood kraft pulp with MnP, using manganese originally existing in the pulp, became possible in the presence of oxalate, a good manganese chelator and reducing reagent. Properties of partially purified MnPs from liquid cultures of white rot fungi, Ganoderma sp. YK-505, Phanerochaete sordida YK-624 and Phanerochaete chrysosporium were compared. MnP from Ganoderma sp. YK-505 was superior to MnPs from P. sordida YK-624 and P. chrysosporium in stabilities against high temperature and high concentration of $H_2O$$_2$. The MnP from Ganoderma sp. YK-505 differed in pH-activity profile from other MnPs. These data suggest that MnP from Ganoderma sp. YK-505 has different structure from those of other fungi. Bleaching of hardwood kraft pulp using the MnP from ganoderma sp. YK-505 is now in progress.

  • PDF

Elucidating soda and soda-anthraquinone pulping characteristics of Korean bamboo species (국내산 주요 죽종의 소다 및 소다-안트라퀴논 펄핑 특성 비교)

  • Lee, Kyu-Seong;Song, Woo-Yong;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.3
    • /
    • pp.44-50
    • /
    • 2016
  • As a raw material for pulp and paper industry, Moso bamboo, Timber bamboo and Henon bamboo pulps were prepared by soda or soda-anthraquinone(Soda-AQ) pulping process. Soda-AQ pulp yields was higher in Henon bamboo (43.2%) than in Moso bamboo or Timber bamboo (32.7-39.2%), but quite lower than hardwood species. In Kappa number comparison, Henon bamboo pulp showed lower (16.6) with 50 min cooking to $170^{\circ}C$ than that of Moso bamboo (22.8) and Timber bamboo (18.9) with 90 min cooking to $170^{\circ}C$. Fiber length of Timber bamboo soda pulp had higher (1.46 mm) than that of Moso bamboo or Henon bamboo (1.18-1.36 mm). All three bamboo pulps showed longer average fiber length than commercial hardwood pulp. With higher pulp yield and lower Kappa number, Henon bamboo is better raw material for pulp than Moso bamboo and Timber bamboo.

Bleaching of Kraft Pulp with Xylanase and Laccase-Mediator System

  • Yoon, Chulhyun;Jung, Hyunchae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • Xylanase (X) derived from Aurreobasidium pullulans and laccase-mediator system (LM) using Trichophyton sp. LKY-7 laccase (TrL) and N-hydroxy-2-pyridone analogue (NHP) as a mediator were applied in hardwood kraft pulp (HwKP) bleaching. The individual and the synergistic effects of X and LM stage were investigated in the enzymatic bleaching of HwKP. Also, the effects of subsequent alkaline extraction (E) and alkaline/hydrogen peroxide treatment (P) were examined. In X or LM treatment alone, an appreciable bleaching effect of HwKP was not observed, whereas subsequent E or P stage enhanced the increase of brightness and the decrease of kappa number. Especially, P stage significantly enhanced the bleaching effect of pulp. Bleaching of HwKP with XLM sequentially gave significantly higher pulp brightness and lower kappa number than that obtained after the treatment of HwKP with X+LM simultaneously. When HwKP was sequentially treated with XLM followed by P stage, the brightness increased by about 11% ISO and the kappa number decreased by about 3.6 in comparison with the initial pulp. Xylanase and laccase were strongly inactivated by NHP both in the absence and the presence of pulp.

Soda and Soda-AQ Pulps Properties from African Tulip Tree (아프리카 튤립으로 제조한 soda 및 soda-AQ 펄프의 특성)

  • Lee, Jai-Sung;Song, Woo-Yong;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.5
    • /
    • pp.85-90
    • /
    • 2015
  • To use the African tulip tree (Spathodea campanulata) as raw material for chemical pulping, soda and soda-AQ pulping was investigated. In chemical compositional analysis, lignin contents of African tulip (33.1%) was higher than other hardwood such as Yellow poplar (17.5%), Acacia (27.1%), or Eucalyptus (24.2%). Soda or soda-AQ pulping with African tulip tree resulted in yield at 43.4-44.8% with 29.5-34.5 Kappa number, pulping condition with 20-22% active alkali. Kappa number of African tulip tree pulp was quite higher than other tropical hardwood (Eucalyptus or Accacia) with less yield due to higher lignin content in wood. Fiber length and width of pulp from African tulip tree was similar to Accacia pulp and shorter than eucalyptus pulp.

Change of Paper's Physical and Fracture Mechanical Properties Depending on Fibers Properties (섬유 특성에 따른 종이의 물리적, 파괴 역학적 특성 변화)

  • 이진호;박종문
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.3
    • /
    • pp.37-42
    • /
    • 2003
  • Physical properties of paper can be explained in terms of the changes in fiber's morphological properties. As the paper machine speed increases, the basis weight decreases and the mixing ratio of inferior recycled fibers increases, paper break becomes important than ever before. One of the objectives of this study is to analyze paper's physical, mechanical and fracture mechanical properties depending on softwood(SW) and hardwood(HW) mixing ratios and recycling. Fibers were refined by Valley beater to 450 mL CSF. Handsheets of 30 g/$\textrm{m}^2$ were prepared at different mixing ratios. Fracture toughness was measured as the amount of energy applied to cracked sample before total failure. Fracture toughness showed different trend to other strength properties. At the mixing ratio of SW 80: HW 20, papers showed the maximum fracture toughness. At this mixing ratio, flexible softwood fibers were mostly broken and stiff hardwood fibers were mostly pulled out.

Fiber Dimensions and Chemical Properties of Various Nonwood Materials and Their Suitability for Paper Production

  • lahan M. Sarwar;Mun Sung Phil;Rashid Mamunur
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.5 s.108
    • /
    • pp.29-35
    • /
    • 2004
  • Fiber dimensions, their derived values and chemical properties of cotton stalks (Gosypium hirsutum L), jute stick (Corchorus capsularis) and dhancha (Sesbania aculeate) have been examined to assess their suitability for paper production. Cotton stalks have a good derived values especially slender ratio, which is comparable to hardwood. The flexibility coefficient of these three non wood plants is better than hardwood. Anatomical analysis shows higher percentage of fibers and vessels than in general non wood plants. Lignin, $\alpha$-cellulose and pentosan contents in these three nonwood plants are within the range of hardwood. Neutral sugar analysis of cotton stalks, jute stick and dhancha shows that the glucose in the major sugar followed by xylose and mannose. The arabinose and galactose are present in minor amount. Alkaline nitrobenzene oxidation of cotton stalks, jute stick and dhancha wood meal exhibits that these nonwood plant lignins mainly consist of syringyl (S) and guaiacyl (V) units. The S/V ratios are 1.6, 1.2 and 2.1 for cotton stalks, jute stick and dhancha, respectively.

Mechanical Properties of Papers Prepared from Hardwood KP and Bacterial Cellulose (활엽수크라프트펄프 및 박테리아 셀룰로오스부터 제조한 종이의 물성)

  • 조남석;김영신;박종문;민두식;안드레레오노비치
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.4
    • /
    • pp.53-63
    • /
    • 1997
  • Most cellulose resources come from the higher plants, but bacteria also synthesize same cellulose as in plants. Many scientists have been widely studied on the bacterial cellulose, the process development, manufacturing, even marketing of cellulose fibers. The bacterial celluloses are very different in its physical and morphological structures. These fibers have many unique properties that are potentially and commercially beneficial. The fine fibers can produce a smooth paper with enchanced its strength property. But there gave been few reports on the mechanical properties of the processing of bacterial cellulose into structural materials. This study were performed to elucidate the mechanical properties of sheets prepared from bacterial cellulose. Also reinforcing effect of bacterial cellulose on the conventional pulp paper as well as surface structures by scanning electron microscopy were discussed. Paper made from bacterial cellulose is 10 times much stronger than ordinary chemical pulp sheet, and the mixing of bacterial cellulose has a remarkable reinforcing effect on the papers. Mechanical strengthes were increased with the increase of bacterial cellulose content in the sheet. This strength increase corresponds to the increasing water retention value and sheet density with the increase of bacterial cellulose content. Scanning electron micrographs were shown that fine microfibrills of bacterial celluloses covered on the surfaces of hardwood pulp fibers, and enhanced sheet strength by its intimate fiber bonding.

  • PDF