• 제목/요약/키워드: hardness-stiffness relationship

검색결과 3건 처리시간 0.024초

Relationship between Barcol hardness and flexural modulus degradation of composite sheets subjected to flexural fatigue

  • Sakin, Raif
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1531-1548
    • /
    • 2015
  • The aim of this study is to investigate the relationship between Barcol hardness (H) and flexural modulus (E) degradation of composite sheets subjected to flexural fatigue. The resin transfer molding (RTM) method was used to produce 3-mm-thick composite sheets with fiber volume fraction of 44%. The composite sheets were subjected to flexural fatigue tests and Barcol scale hardness measurements. After these tests, the stiffness and hardness degradations were investigated in the composite sheets that failed after around one million cycles (stage III). Flexural modulus degradation values were in the range of 0.41-0.42 with the corresponding measured hardness degradation values in the range of 0.25-0.32 for the all fatigued composite sheets. Thus, a 25% reduction in the initial hardness and a 41% reduction in the initial flexural modulus can be taken as the failure criteria. The results showed that a reasonably well-defined relationship between Barcol hardness and flexural modulus degradation in the distance range.

Microstructural evolution and mechanical properties of TiC-Mo2C-WC-Ni multi-component powder by high energy ball milling

  • Jeong-Han Lee;Hyun-Kuk Park
    • Journal of Ceramic Processing Research
    • /
    • 제22권5호
    • /
    • pp.590-596
    • /
    • 2021
  • The widespread use of TiC-based cermets as cutting tools, thin-film, ultracapacitors, nozzles, and bearings is primarily due to exhibit combination of excellent mechanical properties such as low density, high hardness, and stiffness. The TiC cermets were synthesized by high energy ball milling, which includes binder metal (Ni), carbides (WC and Mo2C), wherein the present study focus on the relationship between the core-rim structure, phase constitution, and mechanical properties. Here, using in situ TEM, we clearly observed the behavior of adjacent core-rim formation from the solid-phase reaction with grain refinement of the TiC phase control of both the milling time and lattice formation. Also, we proposed that mechanically alloyed core-rim structure can affect oxidation resistance of TiC-Mo2C-WC-Ni cermets strongly related to activation energy attributed to TiC particle size. The mechanical properties of TiC-Mo2C-WC-Ni cermets suggest the hardening effect is not considered only grain refinement, but rather is solid solution strengthening and particle-dispersion hardening. The present study paves the relation to the formation behavior of both TiC hard phase and core-rim structure due to the mechanical powder synthesis of novel TiC-based cermets.

Binder-free Tungsten Carbide Fabricated by Pulsed Electric Current Sintering

  • Shimojima, K.;Hosokawa, H.;Nakajima, T.;Mizukami, M.;Yamamoto, Y.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.621-622
    • /
    • 2006
  • In this paper, we show some experimental results of binder-free WC sintered by Pulsed Electric Current Sintering (PECS) also known as Field Assisted Sintering Technology (FAST). These binder-free WC have extremely hardness and stiffness. However, these mechanical properties are dependent on the sintering condition, e.g., maximum temperature, applied pressure, etc. We show some relationship between mechanical properties and sintering condition to improve to sinter the binder-free WC.

  • PDF