• Title/Summary/Keyword: hardness microstructure

Search Result 1,365, Processing Time 0.03 seconds

Mechanical Properties and Microstructure Examinations on Austempered Ductile Irons (Austempered Ductile Iron(A.D.I.)의 기계적 성질과 현미경 조직검사)

  • Lee, Seung Seok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.3 no.1
    • /
    • pp.25-33
    • /
    • 1990
  • Recently developed austempered ductile irons(A.D.I.) have good mechanical properties. However it is still needed to examine the relationships between microstructures related to banitic reaction and the mechanical properties. From the mechanical tests such as impact test, hardness test, tensile test, and the microstructure observations, we concluded that the good mechanical properties of A.D.I. came from the fine banitic ferrite structure formed during the first stage of the austempering reaction.

  • PDF

플라즈마 절단 후 제작된 용접부의 기계적 특성

  • 신규인;김형곤;박재학;김성청
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1999.06a
    • /
    • pp.201-206
    • /
    • 1999
  • The influence of surface preparation methods after plasma cutting on the quality of welding zone is investigated. For comparison. three types of welded specimens are prepared by machining(YM), plasma cutting with light regrinding(WPG) and without regrinding(WP), by using three kinds of materials, carbon steel(S45C), stainless steel(Type304) and aluminum alloy (6061-T6). Nondestructive examination, hardness test, microstructure examination, and fracture toughness test are performed. The results show that there is no appreciable reduction in hardness or fracture toughness in WP specimens. But a little difference in heat affected gone size is observed.

  • PDF

Effects of special heat treatment on changes in the hardness of a metal-ceramic alloy during the firing process (금속-도재 보철용 합금의 열처리가 소성과정 중 경도 변화에 미치는 영향)

  • Sung-Min Kim
    • Journal of Technologic Dentistry
    • /
    • v.45 no.3
    • /
    • pp.55-60
    • /
    • 2023
  • Purpose: This study aimed to evaluate the effects of a special heat treatment on Pd-Au-Ag metal-ceramic alloy after degassing treatment and on changes in the hardness of the alloy during the firing process. Methods: Specimen alloys were cast and subjected to degassing at 900℃ for 10 minutes. These specimens were then subjected to a special heat treatment at 600℃ for 15 minutes in a dental porcelain furnace. Further, the specimens were subjected to simulated firing in the porcelain furnace. The resulting specimens were then tested for hardness, and changes in the microstructure were observed. Results: There was a decrease in the hardness of the alloy during the simulated firing of the cast alloy due to the coarsening of the particles. Meanwhile, additional heat treatment after degassing was found to play a crucial role in preventing a decrease in hardness. This treatment effectively suppressed the coarsening of the precipitates during repeated firing at high temperatures. Conclusion: Specific heat treatment of the Pd-Au-Ag metal-ceramic alloy prevented a decrease in its hardness and extended the lifespan of the metal-ceramic prosthesis.

A study on Mechanical and Fatigue Properties of Spheroidal Graphite Cast Iron (구상흑연주철의 기계적 성질및 피로특성에 관한 연구)

  • Park, No-Gwang;Kim, Chang-Ju;Jun, Eui-Jin
    • 한국기계연구소 소보
    • /
    • s.9
    • /
    • pp.83-93
    • /
    • 1982
  • The influence of different heat treatment conditions on microstructure, mechanical and fatigue properties of Spheroidal Graphite cast Iron with 0.4-0.6% Mn was investigated. 1) Maximum tensile strength was arrived by tempering at about $450^{\circ}C$after quenching. Tempering at higher than $600^{\circ}C$ was changed martensitic structure to ferritic structure and secondary graphites were precipitated. 2) The relationship between matrix hardness and total hardness of the specimens are as following. [HB]$T$=0.7[HB] [HB]$M$+35 Maximum tensile strength was arrived at the total hardness of HB400-450. 3) Endurance ratio decreases with increasing total hardness, and fatigue limits can be presumed from as following. $\sigmaf$=$\sigmat$

  • PDF

Effects of Plasma Nitriding on the Surface Characteristics of Tool Steels (공구강의 표면특성에 미치는 플라즈마 질화처리의 영향)

  • 이호종;최한철
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.206-213
    • /
    • 2003
  • Effects of plasma nitriding on the surface characteristics of tool steels have been investigated using wear tester, micro-hardness tester and scanning electron microscope (SEM) Commercial SKD 11 and SM45 alloy were used as specimens and were plasma nitrided using a plasma nitriding equipment for 5 hr and 10hr at $500^{\circ}C$. Microstructure and phase analysis were performed using SEM and XRD. It was found that plasma nitriding for lour at $500^{\circ}C$, compared with plasma nitriding for 10hr at $500^{\circ}C$, had a thick nitrided layer and produced a layer with good wear resistance and hardness as nitriding time increased. SKD11 alloy showed that wear resistance and hardness decreased, whereas surface roughness increased, compared with SM45 alloy.

Wear Resistance Characteristics of Iron Weld Overlays by Composite Chromium Powders (복합 크롬 분말에 의한 철계 용접 오버레이의 내마모 특성)

  • 김종철;박경채;최창옥
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.506-511
    • /
    • 2001
  • Weld overlay has been developed to improve the property of material surface which is used in the severe environment. Weld overlay is the process which uses an arc heat and welds different composition of alloy on the substrate for the improvements of heat resistance and wear resistance. Weld overlay has a lot of advantages which are high hardness, good processing efficiency, easy controlling of layer thickness, good quality and low cost. In this study, weld overlay was performed by MAG welding on the base metal(SS400) with filler metal which contain composite powders(Cr+C+Mn+Mo+NbC) and solid wire(JIS-YGW11). Characterization of hardness and wear resistance were analyzed by EDS, EPMA, XRD and observations of microstructure were performed to investigate characteristics of overlays. The experimental results of overlaid specimens manufactured with Cr+C+Mn+Mo+NbC powders were obtained as fellows. ${\alpha}-phase$, M(Fe, Cr)3C and NbC of overlays were increased with decreasing the wire feed rates and increasing powder feed rates. Also the hardness of overlays were increased and the specific wear were decreased.

  • PDF

Effects of hardness values on the creep rupture strength in a Mod. 9Cr1Mo Steel (Mod. 9Cr1Mo 강의 크리프 강도에 미치는 경도의 영향)

  • Lee, Yeon-Su;Yu, Seok-Hyeon;Gong, Byeong-Uk;Kim, Jeong-Tae
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.637-642
    • /
    • 2003
  • The Modified 9Cr-1Mo steel identified as T91, P91 and F91 in the ASME specification has been widely used for the construction of modern power plants. The available data on the influence of process parameters during manufacturing and fabrication on its properties are not sufficient. In this study, the influence of various thermal cycles on the hardness and the creep rupture strength was analyzed in the base metal and the weldments made in tube and pipe of a Mod.9Cr-1Mo steel. The low hardness, 155Hv, showed low creep rupture strength below the allowable stresses of T91 base metal in the ASME specification. This low value was attributed to the fully recovered dislocation structure and the weakening of precipitation hardening associated with the abnormal thermal cycles.

  • PDF

The Characteristics of the Chungja Celadon the Amount of BaTio3 (BaTio3 조성비 변화에 따른 청자소지물질의 특성)

  • Yun, Mi-Young;Kim, Yeon-Jung;Ja, Lim-Hun
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.1
    • /
    • pp.31-36
    • /
    • 2012
  • In order to improve the mechanical roperties of the Gangjin celadon $BaTiO_3$ was added into the raw materials of celadon matrix. Through SEM and XRD analysis the structural changes were observed and the hardness values were measured. We could confirm that the mechanical strength considerably increased in the $BaTiO_3$ added celadon through the measurement of hardness values. The increase of mechanical strength values in the celadon may result from the compositional change in the microstructure such as grain boundary area through EDAX analysis. We might suggest a fundamental idea to improve the mechanical intensity of the celadon.

Effect of Subzero Treatment on the Microstructure and Mechanical Properties of Austempered Ductile Cast Iron (오스템퍼드 구상흑연주철의 미세조직 및 기계적 성질에 미치는 서브제로처리의 영향)

  • Lee, K.H.;Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.47-52
    • /
    • 2008
  • This study was investigated the effect of subzero treatment in austempered ductile cast iron. Retained austenite transformed to martensite by subzero treatment and strain. With decreasing subzero treatment temperature and increasing strain, retained austenite transformed more to martensite and transformed 30% above by subzero treatment at $-196^{\circ}C$. With decreasing subzero treatment temperature, the value of strength and ratio of increasing of strength, hardness and ratio of increasing of hardness increased but the value of elongation and ratio of decreasing of elongation decreased. With decreasing subzero treatment temperature, impact value and ratio of decreasing of impact value decreased. In case of subzero treatment at $-196^{\circ}C$, hardness value increased about 18% and impact value decreased above 20%. We could find that in subzero treated specimens had a little of effect on the tensile properties but had very much effect on the hardness and value of the impact.

  • PDF

Microstructure and Mechanical Properties of Continuous Cast Ductile Iron (연속주조한 구상흑연주철의 미세조직과 기계적 성질)

  • Choe, Kyeong-Hwan;Cho, Gue-Serb;Lee, Kyong-Whoan;Kim, Ki-Yeong
    • Journal of Korea Foundry Society
    • /
    • v.24 no.1
    • /
    • pp.52-59
    • /
    • 2004
  • Microstructure and mechanical properties of ductile cast iron were investigated in terms of diameter change of samples that gives rise to modify the microstructure due to different cooling rate in the continuous casting process. The chemical composition used in this study was GCD 400 grade. From the microstructural observation, we have found a large number of graphite with small size in diameter which is comparable to the microstructure of the sample produced by conventional sand casting. The major reason of this would he due to high cooling rate. In the sample with 26 mm in diameter, the microstructure was composed of pearlite, iron carbide, and graphite. In the samples with 60 and 100 mm in diameter, however, we have observed a dissimilar microstructure that consisting of ferrite and graphite. Concerning the mechanical property, the sample with 26 mm in diameter showed higher hardness and strength compared to those samples with 60 and 100 mm in diameter. The result obtained for ductility appeared a reversal. Much more works such as inoculation, process design and chemical composition would be required in order to have a sound product even in a small diameter of samples.